تأثیر ناحیه انتقال بر خواص و ریزساختار بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

در این پژوهش سنگدانه‌های طبیعی با سیلیس بالا و نسبت آب به مواد سیمانی به میزان 0/45 استفاده شدند. به‌منظور بررسی تأثیر ناحیه انتقال بر خواص بتن‌ با بررسی رئولوژی بتن تازه، 30 نمونه در قالب 10 طرح اختلاط در محدوة سنی7 تا 180 روزه بررسی گردید و از روش تاگوچی طرح اختلاط منتخب مشخص شد. آزمایش‌های تعیین خواص مکانیکی و دوام بتن انجام شدند و درنهایت ریزساختار مخلوط‌ها بررسی گردید. نتایج نشان داد که با افزایش سن نمونه‌ها، خواص مکانیکی بهبود یافته و به تبع آن کاهش در جذب آب حجمی، نفوذ آب تحت فشار و نفوذ تسریع‌شده یون کلراید و افزایش قابل توجه در مقاومت الکتریکی نمونه‌ها رخ داده ‌است. هم‌چنین در میزان فاز بلوری اکسید کلسیم و تعداد منافذ بزرگ کاهش و در فاز سیلیکات کلسیم هیدراته ناحیه انتقال افزایش حاصل شد که این منجر به بهبود کیفیت ریزساختار گردید. با افزایش سن، سیلیکات‌ کلسیم هیدراته و کربنات‌کلسیم به‌ترتیب %24 و %21/5 زیاد شدند و به تبع آن مقاومت‌های فشاری و ویژه الکتریکی نیز به‌ترتیب %10/3 و %48/6 افزایش یافتند و نفوذ تسریع‌شده یون کلراید %5/2 کاهش یافت. در محدودة 30 میکرومتری، به‌دلیل اغتشاش موجود در منطقه مرزی، روابط همبستگی قابل قبولی بین نسبت عناصر سازنده و خواص بتن به‌دست نیامد. در محدودة 30 تا 50 میکرومتری روابط خطی با ضرائب تعیین 0/85 بین نسبت وزنی کلسیم به سیلیسیم با مقاومت فشاری و نفوذ تسریع‌شده یون کلراید برقرار شد، به‌طوری که با کاهش %82 نسبت وزنی مذکور، مقاومت فشاری %10/3 افزایش و  نفوذ %5/2 کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Interfacial Transition Zone on Properties and Microstructure of Concrete

نویسندگان [English]

  • Seyed Fathollah Sajedi
  • Seyed Qasem Mirahmadi
Professor, Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

The interfacial transition zone (ITZ) is a relatively heterogeneous region with a thickness of 50 micrometers, whose physical and mechanical properties are determined descriptively due to the fine length scale and heterogeneous characteristics. In this research, by focusing on the ratio of different elements forming the ITZ and simultaneous examination of microscopic images, it was possible to numerically investigate the effect of changes in the ratio of elements on the properties and microstructure of concrete. In order to investigate the effect of the ITZ on concrete properties by examining the rheology of fresh concrete, 30 standard cubic samples were examined in the form of 10 mixing plans, and then the selected mixing plan was determined by trial and error. Then, 54 cubic and cylindrical samples of aggregates with high silica and w/c as 0.45 were made, and tests were conducted to determine the mechanical properties and durability of concrete in the age range of 7 to 180 days; finally, the microstructure of the mixtures was investigated. With increasing age, hydrated calcium silicate and calcium carbonate increased by 24% and 21.5%, respectively, and accordingly, the compressive strength (CS) and specific electrical resistances also increased by 10.3% and 48.6%, respectively, and the accelerated penetration of chloride ions decreased by 5.2%. In the limit of 30 micrometers from the aggregate boundary, due to the disturbance in the boundary region, no acceptable correlation relations between the ratio of different constituent elements and concrete properties were obtained. From the limit of 30 to 50 micrometers, linear relationships with coefficients of determination of 0.85 were established between the weight ratio of calcium to silicon with CS and the accelerated penetration of chloride ions, so that by reducing the said weight ratio by 82%, the CS increased by 10.3% and penetration decreased by 5.2%.

کلیدواژه‌ها [English]

  • Interfacial Transition Zone (ITZ)
  • Microstructure
  • X-ray Spectroscopy
  • Atomic Tatio of Elements
  • Scanning Electron Micrograph (SEM)
[1] J. Farran, Introduction: The transition zone-discovery and development, in Interfacial Transition Zone in Concrete,  (1996).
[2] K.L. Scrivener, A. Bentur, P. Pratt, Quantitative characterization of the transition zone in high strength concretes, Advances in Cement Research, 1(4) (1988) 230-237.
[3] K.L. Scrivener, A.K. Crumbie, P. Laugesen, The interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interface science, 12 (2004) 411-421.
[4] L.E. Dalton, J.M. LaManna, S. Jones, M. Pour-Ghaz, Does ITZ Influence Moisture Transport in Concrete?, Transport in Porous Media, 144(3) (2022) 623-639.
[5] J. Maso, Interfacial transition zone in concrete, CRC Press, 1996.
[6] J.L. Costafreda, D.A. Martín, L. Presa, J.L. Parra, Effects of a Natural Mordenite as Pozzolan Material in the Evolution of Mortar Settings, Materials, 14(18) (2021) 5343.
[7] J.A. Rossignolo, Interfacial interactions in concretes with silica fume and SBR latex, Construction and Building Materials, 23(2) (2009) 817-821.
[8] B. Pang, Z. Zhou, X. Cheng, P. Du, H. Xu, ITZ properties of concrete with carbonated steel slag aggregate in salty freeze-thaw environment, Construction and Building Materials, 114 (2016) 162-171.
[9] G. Fang, Q. Wang, M. Zhang, Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete, Cement and Concrete Composites, 119 (2021) 103990.
[10] D.P. Bentz, D.P. Bentz, A three-dimensional cement hydration and microstructure program. I. hydration rate, heat of hydration, and chemical shrinkage, National Institute of Standards and Technology, 1995.
[11] T. Akçaoğlu, M. Tokyay, T. Çelik, Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete, Cement and Concrete Research, 35(2) (2005) 358-363.
[12] J. Maso, “7th International Congress on the Chemistry of Cement”, Paris, in, Editions septima Paris, 1980.
[13] K. Scrivener, P. Pratt, RILEM TC 108 State of the Art Report, New York,  (1994).
[14] K.M. El-Dash, M.O. Ramadan, Effect of aggregate on the performance of confined concrete, Cement and concrete research, 36(3) (2006) 599-605.
[15] J.-J. Zheng, X.-Z. Zhou, Effective medium method for predicting the chloride diffusivity in concrete with ITZ percolation effect, Construction and Building Materials, 47 (2013) 1093-1098.
[16] Y. Xie, D.J. Corr, F. Jin, H. Zhou, S.P. Shah, Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC), Cement and Concrete Composites, 55 (2015) 223-231.
[17] W.A. Tasong, C.J. Lynsdale, J.C. Cripps, Aggregate-cement paste interface: Part I. Influence of aggregate geochemistry, Cement and concrete research, 29(7) (1999) 1019-1025.
[18] K.L. Scrivener, P.L. Pratt, Characterization of interfacial microstructure, Interfacial transition zone in concrete, 2 (1996) 3-18.
[19] K.-Y. Liao, P.-K. Chang, Y.-N. Peng, C.-C. Yang, A study on characteristics of interfacial transition zone in concrete, Cement and Concrete research, 34(6) (2004) 977-989.
[20] P.K. Mehta, Concrete. Structure, properties and materials,  (1986).
[21] F.M. Lea, The chemistry of cement and concrete,  (1935).
[22] M. Zhou, X. He, H. Wang, W. Wu, J. He, C. Wu, Experimental study of mechanism properties of interfacial transition zones in steel fiber reinforced concrete, Case Studies in Construction Materials, 20 (2024) e02954.
[23] C. Committee, Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate, in, ASTM International, 2013.
[24] C. Astm, 12.(2012). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete, ASTM International, i.
[25] A. Standard, Standard practice for selecting proportions for normal, heavyweight, and mass concrete, ACI Man. Concr. Pract,  (1996) 1-38.
[26] A. C143, Standard test method for slump of hydraulic-cement concrete, Book of ASTM Standards,  (2015).
[27] A. Standard, C138: Standard Test Method for Density (Unit Weight), Yield, and Air-Content (Gravimetric) of Concrete, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA,  (2013).
[28] M. Walker, Guide to the construction of reinforced concrete in the Arabian Peninsula, (No Title),  (2002).
[29] B.S. Institution, BS 1881 122: 2011+ A1: 2020. Testing Concrete: Part 122. Method for Determination of Water Absorption, British Standards Institution, 2020.
[30] C. Astm, Standard test method for density, absorption, and voids in hardened concrete, C642-13,  (2013).
[31] C.E.-I.d. Béton, CEB-FIP model code 1990: Design code, Thomas Telford Publishing, 1993.
[32] B. En, 12390-8," Depth of penetration of water under pressure, British Standards Institution,  (2000).
[33] C. ASTM, 1202: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, Annual book of ASTM standards, 4(2) (1997) 639-644.
[34] A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International, 2012.
[35] C. Astm, Standard test method for bulk electrical conductivity of hardened concrete, West Conshohocken (PA): ASTM,  (2012).
[36] V.M. Malhotra, N.J. Carino, Handbook on nondestructive testing of concrete, CRC press, 2003.
[37] A.C.I.C. 222, Protection of Metals in Concrete Against Corrosion (ACI 222R-01), in, ACI Farmington Hills, MI, 2001.
[38] J. Tragardh, Microstructural features and related properties of self-compacting concrete, in:  Self-Compacting Concrete: Proceedings of the First International RILEM Symposium held in Stockholm, 1999, pp. 175-186.
[39] K. Janamian, J.B. Aguiar, Concrete Materials and Technology: A Practical Guide, CRC Press, 2023.
[40] A. Standard, C128-12, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA,  (2012).
[41] K. Kishore, R. Tomar, Understanding the role of interfacial transition zone in cement paste and concrete, Materials Today: Proceedings, 80 (2023) 877-881.
[42] V. Malhotra, N. Carino, CRC Handbook on Nondestructive Testing of Concrete,(1991), in, CRC Press, Florida.
[43] H.K.A. Al-Bayati, S.L. Tighe, H. Baaj, H.K.A. Al-Bayati, Effect of different treatment methods on the interfacial transition zone microstructure to coarse recycled concrete aggregate, in:  Green Technol. Geotechical Mater. Eng. Session, 2016 Conference of the Transportation Association of Canada Toronto. Retreived from https://www. tac-atc. ca/sites/default/files/conf_papers/al-bayati_. pdf, 2016.
[44] S. Erdem, A.R. Dawson, N.H. Thom, Influence of the micro-and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates, Cement and Concrete Research, 42(2) (2012) 447-458.
[45] P. Vargas, O. Restrepo-Baena, J.I. Tobón, Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes, Construction and Building Materials, 137 (2017) 381-389.