حل تحلیلی پاسخ اتصالات تیر I شکل به ستون لوله‌ای در دمای بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی پدافند غیرعامل، تهران، ایران.

2 دانشگاه صنعتی خواجه نصیرالدین طوسی، دانشکده مهندسی عمران، تهران، ایران.

چکیده

 عرشه سکوهای نفت و گاز به دلیل وجود مقادیر قابل‌توجهی انرژی محبوس در فضاهای نسبتاً کوچک و تحت‌فشار، پتانسیل بالای خطرات آتش‌سوزی را دارند. این حوادث محتمل آتش‌سوزی می‌توانند باعث آسیب‌‌های سازه‌‌ای موضعی و کلی شوند که به نوبه خود عواقب جدی نظیر تلفات، تخریب و آسیب به محیط‌زیست را خواهند داشت. ازاین‌رو لازم است این سازه‌ها به‌گونه‌ای طراحی شوند که حداقل مقدار زیان پس از حوادث آتش‌سوزی احتمالی را داشته باشند. در این مقاله یک روش حل بسته تحلیلی برای پیش‌بینی منحنی‌های لنگر - دوران و سختی - دوران اتصالات تیر I شکل به ستون لوله‌ای که عمدتاً در عرشه سکوهای نفتی استفاده می‌شود، در دمای بالا ارائه شده است. لنگر تسلیم و لنگر خمیری موردنیاز در این مدل از توسعه روابط Roark به‌دست‌آمده است. نتایج حاصل از این مدل تحلیلی با مدل اجزای محدود کوپل مکانیکی - حرارتی غیرخطی که قبلاً توسط مؤلف ارائه شده، مقایسه شده است که این مدل اجزای محدود به نوبه خود با استفاده از آزمایش‌های مقیاس کوچک و بزرگ اعتبارسنجی گردیده است. تطابق قابل‌قبولی بین نتایج این مدل تحلیلی و مدل آزمایشگاهی/عددی نیز وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical solution of the response of the I-shaped beam to the tubular column connections

نویسندگان [English]

  • Seied Ahmad Hosseini 1
  • mostafa zeinodini 2
  • taraneh amin taheri 1
1 Faculty of passive defense, malek ashtar university of technology, iran
2 Faculty of Civil and Environmantal Eng., Khaje-Nasir-Toosi University of Technology
چکیده [English]

Off-shore platforms constructed for oil and gas production are prone to high potential fire risks. These probable fire incidents may cause local or global structural damages, which in turn can result in serious consequences such as causalities, destruction of the facilities, and damage to the environment. It is therefore necessary to design these structures so as to ensure the least amount of loss after a possible fire event. Topsides of the offshore platforms are often provided with portal or truss-type structures. The truss, usually, consists of I-beams as chords and tubulars as diagonals. For the main joints of heavy topsides, I-beam-to-tubular leg connections with external diaphragms are usually employed. I-beam-to-tubular column connections with external diaphragms are important in decks and topside structures of the oil/gas platforms. In onshore steel structures, some experimental and numerical studies have been carried out to investigate the behavior of connections in fire. However, the number of studies on the behavior of connections of offshore platforms in fire and post-fire conditions is very limited. Previous studies on fire in offshore platforms mainly deal with numerical simulation and risk assessment related to offshore structures exposed to fire. Recently, the authors have investigated the behavior of I-shaped beam to cylindrical hollow steel (CHS) column connections with external diaphragms, at elevated temperatures. In this paper, a closed-form analytical solution for the prediction of moment-rotation and the rotational stiffness-rotation curves of I-shaped beam to cylindrical column connections, commonly used in off-shore platforms, in room and elevated temperatures is presented. In order to define the behavior of the connection a bounding line moment-rotation model based on the works of Al-Bermani et al. was proposed. Observing the moment-rotation behavior of the connections using the numerical models, it was concluded that the bounding line model is suitable the model for determining M-φ and kj curves of these connections. The required yield and plastic moments in this model were provided by the authors extending Roark's relationships. Therefore, having the complete geometry of the connection and the yield stress value of the material it is easily feasible to determine the yield moment and plastic moment of the connection and its high-temperature behavior. Then, having the values of yield and plastic moments it is possible to depict M - φ and kj - φ curves of these connections in ordinary temperatures. Comparing the analytical results to experimental and numerical results indicates that the analytical relationships present acceptable approximations. The required yield and plastic moments in this model are provided as an extension to Roark's relationships. Relating the I-shaped beam to cylindrical column connection's stiffness in high temperatures to ordinary temperatures, it is then possible to extend the M - φ and kj - φ curves of ordinary temperatures to high temperatures using the above equations. The results of this model are compared with those of a non-linear coupled mechanical-thermal finite element model previously provided by the authors, which was in turn validated using small-scale and large-scale experimental tests. Reasonable agreement has been found between the analytical model results and the experimental/numerical modeling results.

کلیدواژه‌ها [English]

  • I-shaped Beam to Cylindrical Column
  • Off-Shore Platforms
  • High Temperatures
  • Analytical Model
  • Roark's Relationships
[1] M. Nader, A. Astaneh, Dynamic behavior of flexible, semirigid and rigid steel frames, Journal of Constructional Steel Research, 18(3) (1991) 179-192.
[2] C. American Institute of Steel Construction, IL, Specification for Structural Steel Buildings, in:  3, 2022.
[3] E.-E.C.f.C. Steelwork, Design of steel structures: eurocode 3: design of steel structures, part 1-1: general rules and rules for buildings, John Wiley & Sons, 2015.
[4] G. de Winkel, J. Wardenier, Parametric study on the static behaviour of I-beam to tubular column connections under in-plane bending moments, in:  Tubular Structures, Routledge, 2021, pp. 317-324.
[5] M.N.A.S. Ali, Experimental Moment-Rotation Behavior of Semi-Rigid Beam-to-Column Connections, Eastern Mediterranean University EMU, 2015.
[6] A. Cinitha, V. Nandhini, Experimental Studies on Steel Beam-to-Column Connections Under Elevated Temperature, in:  Advances in Applied Mechanical Engineering: Select Proceedings of ICAMER 2019, Springer, 2020, pp. 335-342.
[7] M. Khador, Cyclic behaviour of external diaphragm joint between steel I-section beam and circular hollow section column, University of Warwick, 2015.
[8] G.D. Pawar, V.B. Dawari, Seismic design of bolted beam to column connections in tubular steel structures–A review, Materials Today: Proceedings,  (2023).
[9] J. Yang, T. Sheehan, X. Dai, D. Lam, Structural behaviour of beam to concrete-filled elliptical steel tubular column connections, in:  Structures, Elsevier, 2017, pp. 41-52.
[10] F.M. Al Mohtar, E.G. Hantouche, Effect of thermal creep on the behavior of flush end-plate connection under transient conditions of fire, Fire Safety Journal, 121 (2021) 103268.
[11] V. Kodur, M. Dwaikat, Effect of high temperature creep on the fire response of restrained steel beams, Materials and structures, 43 (2010) 1327-1341.
[12] S.-L. Chan, P.-T. Chui, Non-linear static and cyclic analysis of steel frames with semi-rigid connections, Elsevier, 2000.
[13] E. Lightfoot, A.P. Le Messurier, Elastic analysis of frameworks with elastic connections, Journal of the Structural Division, 100(6) (1974) 1297-1309.
[14] M.J. Frye, G.A. Morris, Analysis of flexibly connected steel frames, Canadian journal of civil engineering, 2(3) (1975) 280-291.
[15] N. Krishnamurthy, H.-T. Huang, P.K. Jeffrey, L.K. Avery, Analytical M-θ curves for end-plate connections, Journal of the Structural Division, 105(1) (1979) 133-145.
[16] F. Al-Bermani, B. Li, K. Zhu, S. Kitipornchai, Cyclic and seismic response of flexibly jointed frames, Engineering Structures, 16(4) (1994) 249-255.
[17] K. Zhu, F. Al-Bermani, S. Kitipornchai, B. Li, Dynamic response of flexibly jointed frames, Engineering  Structures, 17(8) (1995) 575-580.
[18] R.G.B. A.M. Sadegh, Roark’s Formulas for Stress and Strain, Printed in the United States of America, 2020.
[19] S. Hosseini, Fire effects on behaviour of welded steel I-beam to circular tubular chord connections in oil platform decks, Ph. D. Thesis, KN Toosi University, Tehran, Iran, 2012.
[20] ABAQUS CAE FEA Software, in, 2020.