[1] M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, (1988).
[2] M.P. Bendsøe, Optimal shape design as a material distribution problem, Structural optimization, 1(4) (1989) 193-202.
[3] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, 194(1) (2004) 363-393.
[4] G. Rozvany, The SIMP method in topology optimization-theoretical background, advantages and new applications, in: 8th Symposium on Multidisciplinary Analysis and Optimization, 2000, pp. 4738.
[5] N.P. Van Dijk, K. Maute, M. Langelaar, F. Van Keulen, Level-set methods for structural topology optimization: a review, Structural and Multidisciplinary Optimization, 48(3) (2013) 437-472.
[6] H.A. Eschenauer, N. Olhoff, Topology optimization of continuum structures: a review, Appl. Mech. Rev., 54(4) (2001) 331-390.
[7] O. Sigmund, K. Maute, Topology optimization approaches, Structural and Multidisciplinary Optimization, 48(6) (2013) 1031-1055.
[8] M.P. Bendsoe, O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, 2003.
[9] W. Zhang, J. Yuan, J. Zhang, X. Guo, A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Structural and Multidisciplinary Optimization, 53 (2016) 1243-1260.
[10] X. Guo, W. Zhang, W. Zhong, Explicit feature control in structural topology optimization via level set method, Computer Methods in Applied Mechanics and Engineering, 272 (2014) 354-378.
[11] R. Xue, R. Li, Z. Du, W. Zhang, Y. Zhu, Z. Sun, X. Guo, Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization, Extreme Mechanics Letters, 15 (2017) 139-144.
[12] J. Norato, B. Bell, D.A. Tortorelli, A geometry projection method for continuum-based topology optimization with discrete elements, Computer Methods in Applied Mechanics and Engineering, 293 (2015) 306-327.
[13] C. Liu, Y. Zhu, Z. Sun, D. Li, Z. Du, W. Zhang, X. Guo, An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization, Structural and Multidisciplinary Optimization, 58(6) (2018) 2455-2479.
[14] Z. Du, T. Cui, C. Liu, W. Zhang, Y. Guo, X. Guo, An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization, Structural and Multidisciplinary Optimization, 65(5) (2022) 1-29.
[15] X. Lei, C. Liu, Z. Du, W. Zhang, X. Guo, Machine learning-driven real-time topology optimization under moving morphable component-based framework, Journal of Applied Mechanics, 86(1) (2019) 011004.
[16] T. Cui, Z. Du, C. Liu, Z. Sun, X. Guo, Explicit topology optimization with moving morphable component (MMC) introduction mechanism, Acta Mechanica Solida Sinica, 35(3) (2022) 384-408.
[17] X. Guo, W. Zhang, J. Zhang, J. Yuan, Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Computer methods in applied mechanics and engineering, 310 (2016) 711-748.
[18] X. Jiang, H. Wang, Y. Li, K. Mo, Machine learning based parameter tuning strategy for MMC based topology optimization, Advances in Engineering Software, 149, (2020).
[19] X. Xie, A. Yang, Y. Wang, N. Jiang, S. Wang, Fully adaptive isogeometric topology optimization using MMC based on truncated hierarchical B-splines, Structural and Multidisciplinary Optimization, 63(6) (2021) 2869-2887.
[20] Z. Sheng, Y. Sun, K. Liu, H. Wang, An improved feature-driven moving morphable components method for topology optimization, Archive of Applied Mechanics, 94(2) (2024) 261-279.
[21] J. Zhou, G. Zhao, Y. Zeng, G. Li, A novel topology optimization method of plate structure based on moving morphable components and grid structure, Structural and Multidisciplinary Optimization, 67(1) (2024) 8.
[22] T. Shannon, T. Robinson, A. Murphy, C. Armstrong, Generalized Bezier components and successive component refinement using moving morphable components, Structural and Multidisciplinary Optimization, 65(7) (2022) 193.
[23] A.G.M. Michell, LVIII. The limits of economy of material in frame-structures, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(47) (1904) 5. 597-89.
[24] W. Dorn, Automatic design of optimal structures, J. de Mecanique, 3 (1964) 25-52.
[25] G.B. Dantzig, M.N. Thapa, The simplex method, Springer, 1997.
[26] W.S. Hemp, Optimum structures, Clarendon Press, 1973.
[27] E. Parkes, Joints in optimum frameworks, International Journal of Solids and Structures, 11(9) (1975) 1017-1022.
[28] M. Gilbert, A. Tyas, Layout optimization of large‐scale pin‐jointed frames, Engineering computations, (2003).
[29] L. He, M. Gilbert, X. Song, A Python script for adaptive layout optimization of trusses, Structural and Multidisciplinary Optimization, 60(2) (2019) 835-847.
[30] H.E. Fairclough, L. He, T.J. Pritchard, M. Gilbert, LayOpt: an educational web-app for truss layout optimization, Structural and Multidisciplinary Optimization, 64(4) (2021) 2805-2823.
[31] L. He, M. Gilbert, Rationalization of trusses generated via layout optimization, Structural and Multidisciplinary Optimization, 52(4) (2015) 677-694.
[32] G. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Structural and Multidisciplinary optimization, 21(2) (2001) 90-108.
[33] G.I. Rozvany, Difficulties in truss topology optimization with stress, local buckling and system stability constraints, Structural optimization, 11(3) (1996) 213-217.
[34] H.E. Fairclough, Layout Optimization of Structures: Novel Methods and Applications, University of Sheffield, 2019.
[35] A.G. Zaviejaki, Topology optimization of planar trusses Iran University of Science and Technology 1996 (In Persian).
[36] J. Malekifard, Particle swarm optimization method for topology optimization of truss performance, Sistan and Baluchestan University, 2010 (In Persain).
[37] Z. Tiareh, Size, shape, and topology optimization of truss structures under dynamic loads, Yazd University, 2014 (In Persian).
[38] A.A.N. Shirazi, Topology optimization of space trusses using Bee colony optimization method Allameh Jafari University, 2015 (In Persian).
[39] M.R. Sadr, Truss Topology Optimization Using Consistent Approximation, Shahed University, 2019 (In Persian).
[40] E.D. Andersen, K.D. Andersen, The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm, in: High performance optimization, Springer, 2000, pp. 197-232.
[41] M. ApS, Mosek optimization toolbox for matlab, User’s Guide and Reference Manual, Version, 4 , (2019).
[42] X. Guo, W. Zhang, W. Zhong, Doing topology optimization explicitly and geometrically—a new moving morphable components based framework, Journal of Applied Mechanics, 81(8), 2014.
[43] K. Svanberg, The method of moving asymptotes—a new method for structural optimization, International journal for numerical methods in engineering, 24(2) (1987) 359-373.
[44] K. Svanberg, The method of moving asymptotes (MMA) with some extensions, in: Optimization of large structural systems, Springer, 1993, pp. 555-566.
[45] M.P. Bendsøe, A. Ben-Tal, J. Zowe, Optimization methods for truss geometry and topology design, Structural optimization, 7(3) (1994) 141-159.