مدل‌‌سازی اثر سن وسایل نقلیه در برخورد با اشیا ثابت حاشیه راه‌‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه حمل و نقل، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران - مرکز تحقیقات ایمنی کاربردی حمل و نقل جاده‌‌ای، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله اثر افزایش سن خودرو بر شدت جراحت رانندگان در تصادفات برخورد با شیء ثابت، با بررسی ایمنی برخورد پنج خودروی پر کاربرد در ایران (پراید، پژو 405، پژو 206، سمند، تندر 90) بررسی شده است. با توجه به اینکه ایمنی راه‌‌های برون‌‌شهری و استفاده از امکانات ایمنی در این مسیرها ممکن است کمتر از مسیرهای شهری باشد، پژوهش حاضر تنها به تصادفات راه‌‌های برون‌‌شهری (1390-1396) پرداخته است. در ابتدا، از روش درخت تصمیم و رگرسیون برای شناسایی متغیرهای مهم استفاده شده و سپس مدل رگرسیون لجستیک دوگانه جهت بررسی رابطه شدت جراحت رانندگان و عملکرد ایمنی استفاده شده است، و شاخصی با نام "ایمنی برخورد" تعریف شده است. در این مطالعه، سن خودرو همراه هفت متغیر دیگر (سن و جنسیت راننده، وضعیت روشنایی، شرایط سطح راه، نوع راه، شانه راه، و استفاده از کمربند ایمنی) به عنوان متغیرهای مستقل در نظر گرفته شده‌‌اند. نتایج نشان می‌‌دهد که با افزایش سن خودرو، عملکرد ایمنی کاهش می‌‌یابد، به طوری که بخت فوت یا جراحت رانندگان به طور متوسط  پس از پنج سال 20 درصد و بعد از 10 سال 50 درصد افزایش می‌‌یابد. همچنین، این کاهش عملکرد ایمنی در تمامی خودروها یکسان نبوده است، به طوری که عملکرد سمند پس از 10 سال به مراتب بدتر از سایر خودروها بوده است، در حالی که تاثیر افزایش سن برای پژو 405 و پارس کمتر از سایر خودروها بوده است، که نشان می‌‌دهد خودروی سمند زودتر از سایر خودروها مستهلک می‌‌شود و عمر مفید کوتاه‌‌تری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the effect of age of vehicles in collisions with fixed roadside objects

نویسندگان [English]

  • Ali Tavakoli Kashani
  • Iman Tabe bordbar
  • Marzieh Rakhshani Moghadam
IUST
چکیده [English]

This study aimed to examine the crashworthiness (CW) index of the five most commonly used Iranian passenger vehicle brands (Pride, Peugeot 405, Peugeot 206, Samand, and Thunder 90) by assessing the effect of vehicle age on driver injury severity in rural fixed-object crashes. Since rural roads have mostly lower safety standards and usage of safety features than urban areas, only rural crash data from Iran (2011-2017) were analyzed. A two-step approach was applied: initially, the Classification and Regression Tree (CART) method identified important variables, and then, Bionamial Logistic Regression modeled the relationships between injury severity and safety performance, using vehicle age and seven additional variables (driver age and gender, lighting conditions, road surface, road type, shoulder type, and seatbelt use) as independent variables. The CW index, based on the odds ratios, exhibited that vehicles over five years old had a 20% increase in odds of fatal or severe injury, which rose to 50% for vehicles over ten years old. Notably, safety performance declines were not uniform. While most brands decreased similarly up to ten years, Samand showed faster deterioration after this period. Conversely, Peugeot 405 and Pars demonstrated slower declines, indicating longer effective lifespans. Additionally, drivers under 25, driving at sunrise, and not wearing seatbelts were identified as high-risk groups across most brands.

کلیدواژه‌ها [English]

  • Crashworthiness
  • Collision with Fixed Objects
  • Cart
  • Binomial Logistic Regression
  • Vehicle Age
[1]  World Health Organization (2021). extranet. who.int/roadsafety/death-on-the roads/#country_or_area/IRN.
[2]  A. Tavakoli Kashani, M.M. Besharati, An analysis of vehicle occupants’ injury severity in crashes occurred on rural freeways and multilane highways in Iran, International Journal of Transportation Engineering, 4(2) (2016) 137-146.
[3]  X. Yan, J. He, C. Zhang, Z. Liu, C. Wang, B. Qiao, Temporal analysis of crash severities involving male and female drivers: A random parameters approach with heterogeneity in means and variances, Analytic methods in accident research, 30 (2021) 100161.
[4]  M. Yang, Q. Bao, Y. Shen, Q. Qu, R. Zhang, T. Han, H. Zhang, Determinants influencing alcohol-related two-vehicle crash severity: A multivariate Bayesian hierarchical random parameters correlated outcomes logit model, Analytic Methods in Accident Research, 44 (2024) 100361.
 [5] A.T. Kashani, M.M. Besharati, Fatality rate of pedestrians and fatal crash involvement rate of drivers in pedestrian crashes: A case study of Iran, International journal of injury control and safety promotion, 24(2) (2017) 222-231.
 [6] M.D. Keall, S. Newstead, Are SUVs dangerous vehicles?, Accident Analysis & Prevention, 40(3) (2008) 954-963.
[7]  H. Huang, C. Siddiqui, M. Abdel-Aty, Indexing crash worthiness and crash aggressivity by vehicle type, Accident Analysis & Prevention, 43(4) (2011) 1364-1370.
[8]  H. Huang, C. Li, Q. Zeng, Crash protectiveness to occupant injury and vehicle damage: An investigation on major car brands, Accident Analysis & Prevention, 86 (2016) 129-136.
[9]  A. Tavakoli Kashani, H. Arefkhani, Indexing crash worthiness, crash aggressivity, and total secondary safety for major car brands: A case study of Iran, International Journal of Civil Engineering, 16 (2018) 857-869.
[10]  W.J. Wu, C.S. Li, S.C. Peng, The relationships between vehicle characteristics and automobile accidents, Risk Management and Insurance Review, 23(4) (2020) 331-377.
[11]  H. Arefkhani, M.M. Besharati, M. Azizi Bondarabadi, A. Tavakoli Kashani, How does the incompatibility of different vehicle types affect the odds of driver injury?, Journal of Transportation Safety & Security, 13(8) (2021) 860-876.
[12]  C. Wang, F. Chen, Y. Zhang, J. Cheng, Analysis of injury severity in rear-end crashes on an expressway involving different types of vehicles using random-parameters logit models with heterogeneity in means and variances, Transportation letters, 15(7) (2023) 742-753.
[13]  C. Wang, M. Abdel-Aty, L. Han, Effects of speed difference on injury severity of freeway rear-end crashes: Insights from correlated joint random parameters bivariate probit models and temporal instability, Analytic Methods in Accident Research, 42 (2024) 100320.
[14]  R. Yuan, X. Gu, Z. Peng, Q. Xiang, Analysis of factors affecting occupant injury severity in rear-end crashes by different struck vehicle groups: A random thresholds random parameters hierarchical ordered probit model, Journal of Transportation Safety & Security, 15(6) (2023) 636-657.
 [15] S.V. Newstead, L.M. Watson, A.K. Delaney, M.H. Cameron, Crashworthiness and aggressivity of the Australian light vehicle fleet by major crash type, Monash University Accident Research Centre Reports, (227) (2004) 124.
[16]  H. Huang, S. Hu, M. Abdel-Aty, Indexing crash worthiness and crash aggressivity by major car brands, Safety science, 62 (2014) 339-347.
[17]  A. Tavakoli Kashani, I. Tabe Bordbar, M. Rakhshani Moghadam, The safety performance of vehicles in crashes with fixed objects, In The 13th International Congress on Civil Engineering, Tehran, https://civilica.com/doc/1853154, 1402, (in Persian).
[18]  A. Tavakoli Kashani, I. Tabe Bordbar, M. Rakhshani Moghadam, Analysis on different passenger car brands' crashworthiness in two-vehicle, and rollover crashes on rural roads of Iran, In The 19th International Conference on Traffic and Transportation Engineering, Tehran,https://civilica.com/doc/1675920, 1401.
 [19] M. Fredette, L.S. Mambu, A. Chouinard, F. Bellavance, Safety impacts due to the incompatibility of SUVs, minivans, and pickup trucks in two-vehicle collisions, Accident Analysis & Prevention, 40(6) (2008) 1987-1995.
 [20] H. Stigson, A. Ydenius, A. Kullgren, Variation of crash severity and injury risk depending on collisions with different vehicle types and objects, In 2006 international IRCOBI conference on the biomechanics of impact, Madrid, Spain, 2006, pp. 20-22.
[21]  J.-K. Kim, G.F. Ulfarsson, S. Kim, V.N. Shankar, Driver-injury severity in single-vehicle crashes in California: a mixed logit analysis of heterogeneity due to age and gender, Accident Analysis & Prevention, 50 (2013) 1073-1081.
 [22] C. Lee, X. Li, Analysis of injury severity of drivers involved in single-and two-vehicle crashes on highways in Ontario, Accident Analysis & Prevention, 71 (2014) 286-295.
[23]  H. Arefkhani, A. Tavakoli Kashani, An investigation on crash worthiness of different vehicle brands: A case study of rollover crashes, International Journal of Transportation Engineering, 6(2) (2018) 111-122.
[24]  A. Tavakoli Kashani, M. Rakhshani Moghadam, A. Taheri, G. Müller, D.A. Dissanayake, How does the safety performance of different vehicle types and weights affect the severity of a driver’s injury?, International journal of crashworthiness, 29(2) (2024) 198-209.
[25]  L. Gong, W.D. Fan, Modeling single-vehicle run-off-road crash severity in rural areas: Accounting for unobserved heterogeneity and age difference, Accident Analysis & Prevention, 101 (2017) 124-134.
[26]  S.J. Weiss, R. Ellis, A.A. Ernst, R.F. Land, A. Garza, A comparison of rural and urban ambulance crashes, The American journal of emergency medicine, 19(1) (2001) 52-56.
 [27] C. Chen, G. Zhang, H. Huang, J. Wang, R.A. Tarefder, Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model, Accident Analysis & Prevention, 96 (2016) 79-87.
 [28] R.L. Muelleman, K. Mueller, Fatal motor vehicle crashes: variations of crash characteristics within rural regions of different population densities, Journal of Trauma and Acute Care Surgery, 41.2 (1996): 315-320.
[29]  K.D. Awadzi, S. Classen, A. Hall, R.P. Duncan, C.W. Garvan, Predictors of injury among younger and older adults in fatal motor vehicle crashes, Accident Analysis & Prevention, 40(6) (2008) 1804-1810.
[30]  G.F. Ulfarsson, F.L. Mannering, Differences in male and female injury severities in sport-utility vehicle, minivan, pickup and passenger car accidents, Accident Analysis & Prevention, 36(2) (2004) 135-147.
[31]  Y. Kweon, K. Kockelman, Driver attitudes and choices: Seatbelt use, speed limits, alcohol consumption, and crash histories, In Washington DC: 82nd Annual Meeting of Transportation Research Board, Citeseer, 2003.
[32]  M. Bedard, G.H. Guyatt, M.J. Stones, J.P. Hirdes, The independent contribution of driver, crash, and vehicle characteristics to driver fatalities, Accident Analysis & Prevention, 34(6) (2002) 717-727.
[33]  D. Delen, R. Sharda, M. Bessonov, Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks, Accident Analysis & Prevention, 38(3) (2006) 434-444.
[34]  L. Breiman, Classification and regression trees, Routledge, 2017.
[35]  A. Pande, M. Abdel-Aty, Assessment of freeway traffic parameters leading to lane-change related collisions, Accident Analysis & Prevention, 38(5) (2006) 936-948.
[36]  D.N. Gujarati, Econometrics by example, Palgrave Macmillan New York, 2011.
[37]  S. Washington, M. Karlaftis, F. Mannering, P. Anastasopoulos, Statistical and econometric methods for transportation data analysis, Chapman and Hall/CRC, 2020.
[38]  D.G. Kleinbaum, K. Dietz, M. Gail, M. Klein, M. Klein, Logistic regression, Springer, 2002.
[39]  X. Wang, K.M. Kockelman, Use of heteroscedastic ordered logit model to study severity of occupant injury: distinguishing effects of vehicle weight and type, Transportation Research Record, 1908(1) (2005) 195-204.
 [40] X. Zhu, S. Srinivasan, A comprehensive analysis of factors influencing the injury severity of large-truck crashes, Accident Analysis & Prevention, 43(1) (2011) 49-57.