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Estimating Structural Collapse Responses Considering Modeling Uncertainties using 
Artificial Neural Networks and Response Surface Method

M. A. Bayari1, N. Shabakhty2, E. Izadi Zaman Abadi1,*, 

1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

ABSTRACT: This research investigates the collapse responses of a concrete moment frame considering 
modeling uncertainties. These modeling uncertainties are considered for evaluating a collapse response 
related to the modified Ibarra-Krawinkler moment-rotation parameters for beam and column elements of 
a given structure. To analyze these uncertainties, the correlations between the model parameters in one 
component and between two structural components were considered. Latin Hypercube Sampling (LHS) 
method was employed to produce independent random variables. Moreover, Cholesky decomposition 
was adopted to produce correlated random variables. Performing 281 simulations for the uncertainties 
involved considering their inter-correlations, incremental dynamic analysis (IDA) was done using 44 far-
field accelerograms to determine structural collapse responses. Collapse responses of each simulation, 
including mean collapse capacity, mean collapse drift and mean annual frequency, were obtained. Then, 
the collapse responses were predicted using the response surface method and artificial neural network. 
The results show that the Correlation coefficients (R) between the target data resulted from incremental 
dynamic analysis (IDA), output data resulted from response surface method (RSM), and artificial neural 
network (ANN) were obtained for the collapse responses above 0.98. The maximum prediction errors 
for mean collapse capacity and mean collapse drift are less than 5% and for mean annual frequency less 
than 10% under the response surface method (RSM) and artificial neural network (ANN).
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1- Introduction
The seismic performance of structures is evaluated 

based on probability rules. In this regard, the incorporation 
of uncertainty effects in modeling essentially changes the 
mean and dispersion values of responses. Thus, estimating 
parameters affecting uncertainty sources as accurately as 
possible provides more realistic responses of structures’ 
seismic performance [1]. Modeling uncertainties in simulating 
the collapse responses of structures is of high importance 
because of the complicated and limited knowledge of model 
parameters and collapse-related behavior, as well as the high 
impact of the collapse level on the probability performance 
of structures [2, 3]. Due to the inability of available tools to 
evaluate structures’ collapse, it is necessary to idealize the 
nonlinear behavior simulations and different deterioration, 
strength, and stiffness sources of structural components. 
Concentrated plastic hinge models are considered by 
researchers to model the collapse behavior of structures. 
Parameters used to define concentrated hinge models are 
typically calibrated by empirical equations, which functions 
as an important source of uncertainty in simulating structures’ 
collapse responses [4, 5].

2- Methodology
To incorporate the effects of epistemic uncertainties on 

collapse responses, the present study employs a four-story 
concrete structure with a moment frame system. A nonlinear 
concentrated plastic hinge model was employed to calculate 
collapse responses. In addition, OpenSees was used to 
perform modeling and nonlinear dynamic analyses. A total 
of 44 far-fault earthquake records proposed by FEMA-P695 
were utilized in the incremental dynamic analysis (IDA) [6]. 
The concentrated plastic hinge models of concrete structures 
are developed using the material model proposed by Ibara 
et al. [7, 8]. Figure 1 illustrates a concentrated plastic hinge 
model with a tri-linear curve. The curve consists of an elastic 
area, a post-yield area, a pre-capping area with a negative 
slope, and a residual strength area. The yield moment is 
represented as yM , The post-yield, pre-capping, and post-
capping areas are defined by the plastic rotation capacity (

,cap plθ ), maximum moment ( cM ), and post-capping rotation 
capacity ( pcθ ), respectively. The cycling stiffness and 
strength deteriorations are calculated based on the cycling 
energy damping (λ ). Tables 1 and 2 represent the standard 
deviations and correlations of the concentrated hinge model 
parameters in a structural component and between structural 
components.
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Fig. 1. Tri-linear backbone curve of the plastic hinge model

 
 
 
 
 
 
 
 
 

 

 
 

Table 1. The standard deviation of model parameters

Table 2. Correlations between parameters of a component and two structural components

 
 
 
 
 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 

 

 
 

3- Discussion and Result
In this study, 281 dependent samples were produced 

and simulated to determine the input data and make 
response levels for 12 epistemic uncertainties. Then, IDA 
was performed using the Hunt-Fill algorithm with the 44 
records for each simulation under uncertainty conditions. 
The collapse responses, including Sacollapse and Driftcollapse, 
were obtained for each of the 44 records. Then, the mean 
collapse capacity saµ and mean collapse drift 

Driftµ  were 
obtained for each simulation by the mean values of the 
collapse responses. This was repeated for 281 simulations to 

obtain the mean collapse capacity and a mean collapse drift 
for each simulation. The results were used as the target inputs 
in artificial neural networks (ANNs) and the response surface 
method (RSM). A total of 185,460 nonlinear dynamic time-
history analyses were carried out for 281 simulations by the 
Hunt-Fill algorithm with epistemic uncertainties, 44 records, 
and 15 incremental steps for each record. The Pareto chart 
was applied to represent the contribution percentages of the 
uncertainties in the mean collapse capacities. According to 
Figure 2, the contribution percentages of uncertainties in 
the beams in the collapse capacity response are 15.16%, 
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Table 3. The estimated µSa, µDrif, and MAF values at the levels of 16%, 50%, and 84%

Fig. 2. The contribution percentages of the uncertainties to the collapse capacity

18.37%, 1.19%, 31.28%, 1.54%, and 10.75% for θcap,pl, θpc, 
EIstf40, My, 

c

y

M
M

, and λ , respectively. Also, the contribution 
percentages of the column uncertainties were all below 5%, 
and the interactions between the uncertainties accounted for 
14.72% of the structure’s collapse capacity response. 

This study adopted the RSM and an ANN to predict 
collapse responses while incorporating epistemic 
uncertainties. The input data of the ANN were specifications 
of 12 epistemic uncertainties. The target data were the mean 
collapse capacity, mean collapse drift, and mean collapse 
annual frequency (MAF) obtained from IDAs performed on 
281 simulations. Also, the output data of the ANN’s output 
layer were the mean collapse capacity, mean collapse drift, 
and mean collapse annual frequency predicted by the ANN. 

The correlation coefficients of the target and output data for 
the mean collapse capacity were 0.9875 and 0.9877 in the 
RSM and ANN approaches, respectively. The correlation 
coefficients of the target and output data for the mean 
collapse drift were 0.9811 and 0.987 in the RSM and ANN 
approaches, respectively. Finally, the correlation coefficients 
of the target and output data for the mean annual collapse 
frequency were 0.9875 and 0.9814 in the RSM and ANN 
approaches, respectively. Table 3 provides the structure’s 
collapse responses at the levels of 16%, 50%, and 84% for 
the 281 simulations and the values obtained from the IDA, 
RSM, and ANN approaches. In the next step, 104 simulations 
were produced for the 12 epistemic uncertainties using the 
Latin hypercube sampling (LHS) method. However, since a 
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 در پاسخ ظرفیت فروریزشها قطعیتشارکت عدم درصد م. 13 شکل

Figure 13. The contribution percentages of the 
uncertainties to the collapse capacity 

 
 ها در پاسخ دریفت فروریزشدرصد مشارکت عدم قطعیت. 14 شکل

Figure 14. Contribution percentages of the 
uncertainties to the collapse drift 

 
  

 
 های فروریزش پاسخبینی پیش -6

 بینیپیش های مختلفارزیابی روش-1-6
های  قطعیت  نظرگرفتن عدم  های فروریزش سازه با در بینی پاسخهای عصبی و روش سطح پاسخ برای پیشدر این تحقیق از شبکه     

است.    شناختی داده   (R)  ضریب همبستگیاستفاده شده  ابین  تحلیلهای هدف حاصل  دادهز  افزایشی و  های خروجی های دینامیکی 
 شود ( محاسبه می23خطای تخمین نیز طبق رابطه ) ( و  22توسط روش سطح پاسخ و شبکه عصبی، طبق رابطه )بینی  پیشحاصل از  
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 estyهای دینامیکی افزایشی ، مقادیر حاصل از تحلیلمیانگین  obsyهای دینامیکی افزایشی ، مقدار حاصل از تحلیل yobsدر این رابطه 
 بینی شده است. میانگین مقادیر پیش estyبینی شده و مقدار پیش

 
 های فروریزشپاسخبینی پیشروش سطح پاسخ و شبکه عصبی مصنوعی برای  -2-6

پ       مقادیر  به جای  پاسخ  روش سطح  آن   ،اسخدر  از  به دست    تبدیلی  ورودی  متغیرهای  از  تابعی  صورت  تابعی  یدآمیبه  واقع  در   .
-برای متغیرهای ورودی کم باشد نمی  شده  تولید  های نمونه با کمترین خطا را به دست دهد. اگر تعداد  مناسب است که بهترین برازش 

ی در روش طراحی تعداد شبیه سازی مورد نیاز از رابطه ارائه شدهدست آوردن  ه  بینی کرد. در این تحقیق برای بتوان تابعی را پیش
عدم قطعیت، در سطح یک شانزدهم    12دست آوردن یک تابع مشخص برای  ه  مرکب مرکزی استفاده شده است، به طوری که برای ب

هادی برای تابع پاسخ بر حسب عدم  شبیه سازی مورد نیاز است. مدل پیشن   281، تعداد  برابر صفرمرکزی   تکرار نقاطبا تعداد    لفاکتوری
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total of 6,600,000 nonlinear dynamic time-history analyses 
are required for 104 simulations with 44 records and 15 
incremental steps in the Hunt-Fill algorithm, it is difficult 
or even impossible to perform this number of IDAs. Thus, 
the structure’s collapse responses for the 104 simulations 
were predicted only by the RSM and ANN methods. Table 3 
represents the collapse responses at the levels of 16%, 50%, 
and 84%.

4- Conclusions
As mention previously, applying a correlation coefficient 

of above 98% between the IDA collapse responses and RSM 
and ANN collapse responses and an error of below 10% in 
collapse response predictions, it can be concluded that RSM 
and ANN can be employed as high-accuracy prediction 
methods to estimate structural collapse responses. Thus, time-
consuming dynamic time-history analyses are not required for 
other simulations since RSM and ANN can predict structural 
responses in a short time. 
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