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Effect of Three-Dimensional Modeling on the Behavior of Plane Strain or Plane Stress 
around Crack Tip in Compact-Tension (CT) Specimen

Department of Civil Engineering, Razi University, Kermanshah, Iran.  

ABSTRACT: An analysis of the two concepts the failure and crack propagation in various materials has 
always been of interest to researchers. Thus, it is of necessity to investigate the failure of construction 
steel as one of the most widely used materials in the industry. Numerical modeling is always a compliment 
to the analysis of laboratory samples. One important issue, particularly in failure problems, is to study 
the behavior of laboratory samples according to their dimensions. In the current research, the effect 
of sample thickness size on crack tip behavior is numerically examined. A standard CT specimen is 
commonly used to evaluate the failure of ductile materials. The crack tip behavior along the thicknesses 
of the laboratory samples is a combination of plane stress and plane strain behavior. Accordingly, in the 
present study, the effect of thickness on the numerical samples was investigated via the numerical result 
validation. The validated results then were used as a complement to the experimental results. Modeling 
and analysis of the numerical samples of varying thicknesses indicated that, with progression from the 
sample thickness center towards the free edges, the behavior shifts from plane strain to plane stress. In 
the case of the standard CT specimen with 25 mm crack length, the samples with greater than 15 mm 
thickness have an almost plane strain behavior, and the results are proved to be reliable. Then, with 
further analysis and taking into account the parameters dependent on sample size, loading value, and 
stress-strain values perpendicular to the equation plane, an equation was presented which can be used 
to realize to what extent the behavior in the free edge of the CT specimen operates in the form of plane 
stress or plane strain. 
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1- Introduction 
Subramany et al. [1] investigated the behavior of crack 

tips in the ductile material in three dimensions under 
the combination of first and second fracture modes [1]. 
Toshiyuki et al. [2] analyzed the effect of sample thickness 
on J integral value, and by analyzing finite element samples 
and calculating the Θ parameter, the authors concluded that 
by increasing Θ value and thickness of numerical samples, 
J-integral value decreases [2]. In the current research, after 
validation of steel yield surface and j integral method, the 
effect of sample thickness size on the results of numerical 
analyzes was investigated. Finally, an equation was presented 
considering the sample dimensions ( )B W , the amount of 
load applied 0( )P P , and the stress-strain perpendicular to the 
plane. Using the equation, it would be feasible to realize what 
proportion of the sample thickness in the free edge operates 
as plane stress or plane strain.

2- Specifications of materials and sample dimensions
In the current study, a CT specimen proposed by Simha [3] 

was used to analyze the effect of 3D modeling and the effect 

of thickness on crack tip behavior. The sample is made of 
German standard ST37 steel [4]. Fig. 1 shows the dimensions 
and geometry of the pressure-strain sample according to 
ASTM-E833 [5].

3- Numerical model validation
ANSYS v19 software was used for numerical analysis. 

Solid 186 20-node element and plane183 8-node element 
were applied for 3D and 2-D modeling, respectively. 

3- 1- . Validation Of Nonlinear Steel Behavior
To analyze the nonlinear behavior of steel, the Von Mises 

yield level with Voce Law Nonlinear Isotropic Hardening 
was used.

3- 2- Validation Of Extraction Of Crack Tip Parameters
Ensuring the nonlinear steel behavior model, J integral 

method was used to calculate the crack tip parameters [6]. 
The formulation of Shih [6] was applied to perform the 
analysis in 2D and 3D space.
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Fig. 2. Comparison of numerical and laboratory results versus 
Energy-displacement release rate.

Fig. 1. Dimensions and geometry of model according to ASTM 
standard [5].
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4. Investigate the effect of sample thickness on the 
results 

In this part, the effect of the varying thicknesses of the 
sample on the numerical results of the CT specimen was 
investigated. The numerical sample thickness from 1 mm 
(plane stress) to 25 mm (plane strain) with a 1 mm 
increment was modeled and analyzed to take into account 
a wide range of responses ranging from plane stress to 
plane strain.  At the center of the numerical sample 
thickness 3( )X B , as the sample thickness increases, the 
strain value decreases in the third direction. This strain 
reduction perpendicular to the plane provokes the sample 
behavior to approach flat strain behavior. Thus, 
considering the strain results in the direction 
perpendicular to the plate, if ( 25) 0.6thk  , the strain 
value remains constant in the third direction. In other 
words, for the samples with a crack length of 25 mm, the 
thickness of the laboratory sample must be greater than 
15 mm for the sample behavior to be approximately plane 
strain. 
 
4.1. Plain stress or plain strain behavior or their 
combination along the thickness 

In this part, the effect of stress in the direction exterior 
to the plane in different loading steps is investigated. In 
other words, with an increase in loading, what proportion 
of the sample thickness ( ) ?b B =  operates as plane stress 
or a plane strain? 

 

 
Fig. 3. Strain and stress values in the direction exterior to the 

plane along the thickness. 
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was modeled and analyzed to take into account a wide range 
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Fig. 3. Strain and stress values in the direction exterior to the plane along the thickness.

 

 

Fig. 4. The intersection of stress and strain values in the third direction surface Ψ.

To further investigate the effect of the numerical sample 
thickness on the sample behavior along the thickness, the 
numerical samples with a thickness of 5 to 100 mm were 
modeled (0.1 2)B W≤ ≤  to consider the wide range of the 
responses.

Given the three variables B W , 0P P , and 3X B  
considering all the thicknesses of the numerical models from 
5 mm to 100 mm, the boundary lines can be represented 
continuously with a single surface (Ψ). Given the B W  ratio, 
Ψ indicates the behavior of plane stress or plane strain along 

the thickness during the loading time of numerical samples. 
By performing several nonlinear regression and surface Ψ 
sensitivity analyses, the optimal formula for this surface is a 
combination of exponents and powers (Eq. (1)).
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5. Conclusions 

In the present article, the nonlinear behavior of steel 
and extraction of crack tip parameters were validated by 
J integral method. The energy release rate of the crack tip 
in the 3D model was very close to the experimental 
results due to the consideration of all the stress 
components. Thus, it is recommended to enhance the 
accuracy of the results when analyzing ductile failure 
problems via increasing computational cost (3D 
modeling). By modeling the standard specimen (CT) 
under Fig. 1 with varying thicknesses ranging from 1 to 
25 mm and 1 mm increment, it was observed that by 
increasing the sample thickness, the strain perpendicular 
to the plate ( )zz  at the thickness center of the numerical 
samples tends to decrease. Thus, the behavior of the 3D 
numerical models inclines toward the plain strain 
behavior. In the next part of the article, taking into 
account the three variables including B W , 0P P  and

3X B the intersection of the normalized stress and strain 
perpendicular to the plane, the surface was obtained in 

the 3D space. By formulating surface Ψ, it would be 
feasible to realize what proportion of the sample 
thickness in the free edge operates as plane stress or plane 
strain. 
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5- Conclusions
In the present article, the nonlinear behavior of steel 

and extraction of crack tip parameters were validated by 
J integral method. The energy release rate of the crack tip 
in the 3D model was very close to the experimental results 
due to the consideration of all the stress components. Thus, 
it is recommended to enhance the accuracy of the results 
when analyzing ductile failure problems via increasing 
computational cost (3D modeling). By modeling the standard 
specimen (CT) under Fig. 1 with varying thicknesses ranging 
from 1 to 25 mm and 1 mm increment, it was observed that 
by increasing the sample thickness, the strain perpendicular 
to the plate ( )zzε  at the thickness center of the numerical 
samples tends to decrease. Thus, the behavior of the 3D 
numerical models inclines toward the plain strain behavior. 
In the next part of the article, taking into account the three 
variables including B W , 0P P  and 3X B the intersection of 
the normalized stress and strain perpendicular to the plane, 
the surface was obtained in the 3D space. By formulating 
surface Ψ, it would be feasible to realize what proportion of 
the sample thickness in the free edge operates as plane stress 
or plane strain.
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