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ABSTRACT:  The estimation of hydraulic conductivity is one of the most important part of 
hydrogeological studies which is important in groundwater management. But due to practical, time or 
cost constraints, direct measurement is difficult. Hence, the using artificial intelligence models with 
low cost and high performance can be an appropriate alternative for this purpose. Since input data and 
different training techniques in these models are the most important source of uncertainty, the effect 
of various sources of uncertainty in output should be considered. In this research a Bayesian Model 
Averaging (BMA) are developed which includes the model combination of artificial neural network, 
fuzzy logic and neuro-fuzzy to estimate hydraulic conductivity and uncertainty analysis. In the BMA 
model, the weight of the models is determined by the Bayesian information criterion (BIC), and the 
within-model variance, steam from the uncertainty of input data and the between-model variance steam 
from uncertainty associated with the nature of the artificial intelligence model are calculated. In this 
study, the developed method has been applied to estimate the hydraulic conductivity in the Urmia 
aquifer. The results show that although the determination coefficient of BMA is not higher than the 
determination coefficient of the best model, the output of the BMA is the result of assigning weights that 
take into account the uncertainty between the models and the input data. Also, the effect of groundwater 
level variation on estimated hydraulic conductivity from pumpage test up to 2015 was evaluated and the 
result indicated an insignificant changes in hydraulic conductivity. 
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1. Introduction
Hydraulic conductivity were estimated through various 

Artificial Intelligence (AI) methods, such as ANN (Merdun 
et al, 2006; Sun, 2011; Yao et al, 2015), FL (Ross et al. 2007; 
Kadkhodaie-Ilkhchi and Amini 2009) and NF (Malki and 
Baldwin 2002; Hurtado et al. 2009) [1-7]. Although hydraulic 
conductivity has been estimated by various AI models, limited 
research are developed which analyze uncertainty associated 
with artificial intelligence techniques by Bayesian Model 
Averaging (BMA) method.

BMA transformed into a practical tool since Draper 
(1995) and Moazamnia et al. (2019), is a strategy to combine 
Multiple Models (MM) often constructed by perturbing 
parameters; and to use its capability for assessing inherent 
uncertainties [8-9]. This paper investigates performances of 
BMA by combining separate MMs comprising three different 
AI techniques for predicting hydraulic conductivity of Urmia 
aquifer. Also, due to the decline in groundwater level in Urmia 
plain, the effect of the decline on the estimated hydraulic 
conductivity changes by the Bayesian model are evaluated.

In this research, the effect of uncertainty of input data and 

AI models for predicting hydraulic conductivity in Urmia plain 
are investigated by the Bayesian Model Averaging approach. 
AI models include ANN, SFL, and NF models, which are 
common models for predicting hydrogeological parameters. 
After predicting the hydraulic conductivity, the within-model 
uncertainty and the between-model uncertainty is calculated 
spatially.

2. Methodology
The Law of Total Probability: BMA combines n plausible 

models as expressed by Eq. (1) below as follows, (Draper 
1995) [8]:

∑
=

D=D
n

p
pp DMMDD

1
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where )|Pr( DD  is the probability of the prediction of 
hydraulic conductivity (denoted as D) given the measured 
hydraulic conductivity (denoted as D); ),|Pr( pMDD is the 
conditional probability of the predicted quantity given the 
observed data D and given model )( pM ; and )|Pr( DM p  is 
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the posterior probability of the model, which are also known 
as model weight, given the data D, (see Draper 1995; Hoting 
et al., 1999)[9]. In this study D represents predicted hydraulic 
conductivity, D denotes input data (d, EC, Rt, B) and )( pM  
denotes ANN, SFL and NF.

Bayesian Theorem: The Bayes theorem, formulated for 
BMA, uses n plausible models {M1, M2, …, Mn}, where each 
array is one representation of the state variable of predicting 
hydraulic conductivity, and their corresponding measured 
hydraulic conductivity values at each of the observation well 
are denoted by D. The theorem is detailed by Berger, 1985 and 
is expressed as[10]:
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Where )|Pr( DM p  is the posterior probability, which 
learns a better estimate from the given data; Pr(Mp) is a prior 
model probability for the model Mp, evaluated by expert 
judgments or estimated e.g. Wöhling et al. (2015); )|Pr( pMD  
is marginal likelihood function for model Mp. As per Li and 
Tsai (2009), marginal likelihood function is approximated by 
[11-12]:
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where N is number of data; mp is number of model 
parameters; Qp is the sum of weighted squared errors 
expressed by Eq. (5); D is predicted hydraulic conductivity 
and D is measured hydraulic conductivity; CΔ is the variance 
matrix of prediction errors using Monte Carlo simulations on 
model parameters (Li and Tsai 2009) [12]. Eqs. (3), (4) and 
(5) are replaced in Eq. (2) and are manipulated to derive the 
following:
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where ΔBICp = BICp − BICmin; in which BICmin (Bayesian 
Information Criteria) is the lowest BIC value among the 
models; α is a scaling factor used in the variance window.

3. DISCUSSION AND RESULTS
To estimate the hydraulic conductivity using the AI 

models, the authors used d (distance of each estimation point 
to the origin of the coordinate system), B (the thickness of 
the aquifer), Rt (transverse resistance of the aquifer), and 
EC (the salinity of formation water) as input parameters. 
The input data uncertainty was considered from Kriging 
variances, which propagated to the AI model logK output 
through weights and rules. The uncertainty for input data is 
considered for Rt and EC, because the values of D and B in 
the location of the hydraulic conductivity measurement are 
definite. The scatter diagram and residual error of AI models 
and Bayesian model averaging method is shown in Fig 1. Fig. 
1(a) shows that the results of the Bayesian model have less 
dispersion than other models. In Fig. 1 (b), it is also observed 
that the residual error diagram of the Bayesian model is 
lower than other models. The highlights of the overall results 
presented in this sections are as follows: (i) no single model 
performs the best in all cases; (ii) performance metrics are 
useful summaries and together with scatter diagrams they 
uncover the aspects hidden by performance metrics that the 
fitted models are hardly perfect.

4. CONCLUSIONS
The results of the three AI models show that there is no 

single model performing the best but they have convergences 
and divergences. BMA combines these modelling results into 
a single model, in which the combined model is a learning 
from the convergence and divergence of the AI models and 
as such it performs better than the individual models most of 
the time but overwhelmingly reduces the scatters in the error 
residuals.
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Fig. 1. Performance of AI model and BMA: (a) scatter diagram; (b) residual error 
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Fig. 1. Performance of AI model and BMA: (a) scatter diagram; (b) residual error
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