
Amirkabir Journal of Civil Engineering

Amirkabir J. Civil Eng., 51(5) (2019)307-310
DOI:   10.22060/ceej.2018.14250.5602

Experimental Study of Hydraulic Performance of Stepped Spillway with a Curve Axis 
Affected by Downstream Channel Width Changes

A. Foroudi1, K. Roushangar1* , M. Saneie2 

1 Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran 
2 Soil Conservation and Watershed Management Research Institute, Tehran, Iran

ABSTRACT:  Realization of the advantages of a higher degree of energy dissipation have created 
an increasing interest in stepped spillways. This study using a three dimensional, 1:50 scale, physical 
model was conducted to investigate the impact of variation downstream channel width of the converging 
stepped spillways with a curve axis. For this purpose, the converging stepped spillway with a curve axis 
was constructed and tested in four ratio of downstream channel width to spillway width (
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1. INTRODUCTION
Spillway is one of the most important components of 

the dam that many failures of dams have been attributed to 
their inadequate capacity and the safety of dams is important 
in direct and close relationship with the capacity of the 
spillway, so the spillway must be a strong, reliable and high-
performance structure that can be ready for exploitation at 
any moment. Fig. 1 illustrates a stepped Spillway with a Curve 
Axis with its important hydraulic and structural elements. 

According to Fig. 1, W and P are the spillway height and 
spillway width respectively; h is the height of the step; θ is the 
convergence angle of training walls; H is the total upstream 
water head on the spillway; and d is the flow depth in the 
downstream channel.

Given the increasing importance of these spillways, 
numerous researches and studies relating to hydraulic 
performance and the factors affecting energy dissipation over 
stepped spillways has been conducted. 

Accordingly, the hydraulic flow over the stepped spillway 
has been reported in three types: 1. Nappe flow regime 2. 
Transition flow regime 3. Skimming flow regime [1, 2]. The 
effective criteria in generating various types of flow in stepped 
spillway, including the geometry of the steps (length of the 

steps and the height of the steps) and the amount of discharge 
passing over the spillway [3]. Reference [4] conducted 
experimental investigation on energy dissipation over the 
stepped spillways, the results showed that for a constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1. Schematic of a  typical  converging stepped 
spillway with curve axis 
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total upstream head, the increase in the number of steps 
significantly increases the energy dissipation. The recent and 
relevant references that dealt with laboratory investigations 
[5-8] addressed the main characteristics of the flow and 
then several relationships for flow and energy dissipation 
over stepped spillways has been proposed. However, surveys 
show that despite the numerous researches, the hydraulic 
performance of stepped spillway with a curve axis has not 
been considered. Consequently, in this paper, the effects of 
downstream channel width changes on hydraulic performance 
are studied.

2. DIMENSIONAL ANALYSIS 
It is possible to express discharge of stepped spillways with 

a curve axis in terms of the fallowing parameters:
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f (Q, H, W, Wch ,P, h, Hd, g, ,  , hd, d, θ)=0        (1)   

where f is a functional symbol; Q is the discharge; Hd is 
the design head; g is the gravitational acceleration;  
and  are density and dynamic viscosity, respectively; σ 
is the surface tension; hd is high difference between the 
water surface elevation in the crest and downstream 
flow depth; and ⍺ is the angle between the upstream 
face and the horizontal; Equation 1 represents a physical 
phenomenon. Centered on the Buckingham Π theorem, 
this equation may be expressed in a dimensionless form 
as:       

),,,,,,,,,,( 121110987654321 =           (2)      

where 1  to 12  are the dimensionless. Considering Q, 
H, and ρ as dimensional independent parameters, 
according to the procedure suggested by Reference [9]. 
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3. Experimental results 
3.1 Discharge coefficient 

 Cd variations for varying Wch’s are presented against 
H/Hd in Figure 2a. As can be seen, before the 
submergence stage for the spillway, (H/Hd)< 1.3, heads 
lower than the design head will result in a decrease in 
Cd , But in the range of (H/Hd) > 1.3, as the width ratio 
decreases, Cd will declines faster due in part to the local 
submergence at the downstream. Figure 2b is a plot of 
downstream floor conditions on the Cd. As shown in 
this Figure, in the range of 2.3

+
H

hd d , the ratio of the 

discharge coefficient to the ratio of the downstream 
channel width is equal to 1, which means that in this 
range, the downstream floor position has no effect on 
the discharge coefficient. By contrast, in the range 
of 2.32 

+


H
hd d , the discharge coefficient ratios are less 

than 1 and it indicates the effect of downstream apron 
condition on the coefficient of discharge and so, as Wch 
increases, the discharge coefficient increases. . Figure 
2c demonstrates that the Cd values were affected by tail-
water conditions against the discharge coefficient of 
free flow conditions. As can be noticed, in the range 
of 7.0

H
hd , Cd is affected by the variation width ratio 

due to tail-water submergence. By contrast, in the range 
of 7.0

H
hd , variation of Wch’s has no significant effect 

on the discharge coefficient. 

3.2 Energy dissipation 

Figure 3 shows the energy dissipation variations for 
varying Wch’s. It was observed that as discharge 
increases, the energy dissipation decreases for all 

models. Moreover, in the range of 1.1>
dQ

Q , the model 

with higher degree of 
W

Wch  reduce more energy 

dissipation. 
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3.3  Discharge-stage 
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Wch with ability 

to pass the QPMF in the Maximum allowable head can be 
selected as the best model. 

4. Conclusions 

General qualitative and quantitative results of the 
present study are summarized as the fallowing: 
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3. EXPERIMENTAL RESULTS
3.1 Discharge coefficient

 Cd variations for varying Wch’s are presented against H/Hd 
in Fig. 2a. As can be seen, before the submergence stage for 
the spillway, (H/Hd)< 1.3, heads lower than the design head 
will result in a decrease in Cd , But in the range of (H/Hd) > 
1.3, as the width ratio decreases, Cd will declines faster due in 
part to the local submergence at the downstream. Fig. 2b is a 
plot of downstream floor conditions on the Cd. As shown in 
this Figure, in the range of 2.3>

+
H

hd d , the ratio of the discharge 
coefficient to the ratio of the downstream channel width is 
equal to 1, which means that in this range, the downstream 
floor position has no effect on the discharge coefficient. By 
contrast, in the range of 2.32 <

+
<

H
hd d , the discharge coefficient 

ratios are less than 1 and it indicates the effect of downstream 
apron condition on the coefficient of discharge and so, 
as Wch increases, the discharge coefficient increases. Fig. 
2c demonstrates that the Cd values were affected by tail-
water conditions against the discharge coefficient of free 
flow conditions. As can be noticed, in the range of 7.0<

H
hd , 

Cd is affected by the variation width ratio due to tail-water 
submergence. By contrast, in the range of 7.0>

H
hd , variation of 

Wch’s has no significant effect on the discharge coefficient.

3.2 Energy dissipation
Fig. 3 shows the energy dissipation variations for varying 

Wch’s. It was observed that as discharge increases, the energy 
dissipation decreases for all models. Moreover, in the range 
of 1.1>

dQ
Q , the model with higher degree of  reduce more 

energy dissipation.
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can be selected as the best 
model due to its ability to pass the probable maximum flood 
in the Maximum allowable head.
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