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in earthquake excitations 
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ABSTRACT:  This paper uses centralized and decentralized H∞ controllers with static output 
feedback and linear matrix inequality theory (LMI) as well as a number of changes in LMI variables 
to retrofit shear structures against a variety of uncertainties. The robustness of this method is 
evaluated both in centralized and decentralized controls against dynamic forces such as earthquake, 
uncertainty in earthquake excitation and sensor failure, then structural responses are compared. 
Finally, the responses of the used control algorithm are compared with the results of the linear 
quadratic regulator controller (LQR). There are two structural models, including 5 and 20 stories 
shear structures. The results indicate good robustness of the used control algorithm to the failure 
of the sensors, the clear difference in response values of the applied algorithm compared to the 
LQR method, and near results in centralized and decentralized controllers. Although the earthquake 
excitations uncertainty changes the responses but still controlled responses are clearly less than the 
uncontrolled responses.
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1. INTRODUCTION
Structural failure due to vibrations is one of the issues 

that are dealt with extensively today. Various methods are 
used to reduce the harmful effects of vibrations. One of the 
most effective methods is centralized and decentralized active 
controls, [1-5].

Systems equipped with decentralized controllers, similar 
to centralized controllers, are sensitive to sensor failures as well 
as actuators. These failures can impair the overall performance 
of the closed loop system. In this case, in addition to detecting 
a failure, a program must be developed to maintain system 
stability despite the failure. Also, since a number of dynamic 
excitations such as earthquakes and wind loads cannot be 
measured at the time of occurrence, it is therefore necessary 
to employ methods that are resistant to such uncertainties, 
[6]. The robust control method protects the real properties of 
the control loop for all controlled programs, [7].

In this paper, the robustness of H∞ controller with static 
output feedback incorporated with the new linear matrix 
inequalities (LMI) constraints for the control of the shear 
structures with centralized, fully decentralized and  partial 
decentralized control methods (coupled and uncoupled) 
against sensor failures and uncertainty in earthquake 
excitations is investigated.

2. METHODOLOGY
For control system with sensor failures probability the 

state space equation takes the following form:

Where nRtX ∈)(  is the state vector where n is degrees of 
freedom, nRwE 2∈ is coefficient vector for earthquake ground 
acceleration, z(t) is the controlled output and

Where nnRA 22 ×∈ , nnRuB ×∈ 2 , nnRF ×∈  are system, 
control force coefficient and sensor failure matrices 
respectively. kf is sensor failure tolerant feedback controller 
gain matrix and npnpRyC ,×∈  is fixed real matrix where 
p indicates the number of outputs. Cz and Dz are real fixed 
matrices with appropriate dimensions.

For the centralized control system the LMI takes the 
following form
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In this paper, to apply the decentralized control 
algorithms to the static output feedback control system, 
the sparsity patterns are used. For this reason, some new 
variables are presented to produce a simple term of the 
controller gain matrix 
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are symmetric matrices, prRRY ×∈ where r is the 

number of actuators. )ker(p)-(nnRS yC=×∈ And 

pnRR ×∈ is defined as 
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Now static output feedback controller can be 
calculated as follows: 
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In this paper, to apply the decentralized control algorithms to 
the static output feedback control system, the sparsity patterns 
are used. For this reason, some new variables are presented to 
produce a simple term of the controller gain matrix

Where )()( pnpnRSQ −×−∈   and ppRRQ ×∈  are symmetric 

matrices, prRRY ×∈ where r is the number of actuators. 

)ker(p)-(nnRS yC=×∈ And pnRR ×∈ is defined as

Then the LMI in equation (4) converts to

Now static output feedback controller can be calculated as 
follows:

To investigate the effectiveness of used algorithm four case 
for sensor failure and earthquake uncertainties are defined 
and two structural model including 5 and 20 stories shear 
structures are modeled: 

3. DISCUSSION AND RESULTS
According to Fig. 1, in case 3 the value of the inter-story 

drift is slightly increased compared to case 0. In fact, it can 
be said that the inter-story drift has corresponded in two 
cases.

Fig. 2 shows the maximum inter-story drift in the 20-story 
shear structure in the uncontrolled model as well as the 
centralized, fully decentralized and partial decentralized 
controller model in case 2. As shown in the figure, despite 
uncertainty and sensor failures, responses are decreased to 
the uncontrolled model.

Fig. 3 shows the maximum values of the drifts in the 

20-storey shear structure in different controllers in case3. 
Responses have decreased despite the failure of the sensors 
compared to the uncontrolled model. The centralized 
controller has the worst performance.

4. CONCLUSIONS
In this paper, the centralized and decentralized H∞ 

controllers with static output feedback, uncertainty in seismic 
excitation and probability of sensor failure with linear matrix 
inequalities have been used. Numerical models including 5 
and 20 story shear structures have been studied. Under the 
acceleration of the north-south Kobe earthquake of 1995, the 
response of the structures is evaluated.

The results show good performance of decentralized 
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fact, it can be said that the inter-story drift has 
corresponded in two cases. 

Figure 2 shows the maximum inter-story drift in the 
20-story shear structure in the uncontrolled model as 
well as the centralized, fully decentralized and partial 
decentralized controller model in case 2. As shown in 
the figure, despite uncertainty and sensor failures, 
responses are decreased to the uncontrolled model. 

Figure 3 shows the maximum values of the drifts in 
the 20-storey shear structure in different controllers in 
case3. Responses have decreased despite the failure of 
the sensors compared to the uncontrolled model. The 
centralized controller has the worst performance. 
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controller compared to centralized, good resistance of 
centralized and decentralized control algorithm against sensor 
failure and good control method performance with increasing 
number of stories. Also, despite the earthquake uncertainty, 
although the responses are much lower than the uncontrolled 
model, they increase relative to the former state where the 
earthquake acceleration change was not applied. Among 
the decentralized control methods, the partial decentralized 
controller performs very well, but requires more control force, 
which is why a fully decentralized controller seems to be a 
good alternative to a centralized controller.
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