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ABSTRACT  

The dynamic response of structures under seismic loading is a critical issue in civil engineering that requires 

precise and efficient analytical methods. This research presents an efficient formulation for the nonlinear dynamic 

analysis of structures termed the Gauss-Legendre-Hermite Three-Point (GLH-3P) method. This method is based 

on the three-point implicit Gauss integration rule and employs third-order Hermite interpolation for sub-step 

approximations. The proposed formulation is capable of analyzing systems with geometric and material 

nonlinearities and covers various loading patterns. Results obtained from the new method were compared with 

established techniques such as the semi-analytical Duhamel integral and the pseudo-analytical Newmark-beta and 

Wilson-theta methods. The results indicate that the proposed method reduces the root mean square (RMS) error 

by up to 18% in linear systems and up to 93% in nonlinear systems compared to the Newmark method. The 

formulation demonstrates significant superiority in terms of accuracy, stability, convergence, and computational 

cost. 
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 Introduction 

The oscillatory motion of an ideal mass-spring-damper 

system is modeled by a second-order ODE2 known as the 

DEOM3. To predict the behavior of this system over 

time, the DEOM must be solved within a specific time 

interval. While analytical solutions are generally 

preferred, they are often difficult to obtain in practical 

engineering due to irregular time-varying excitation 

functions (e.g., earthquakes) and nonlinear system 

behavior [1]. 

Step-by-step time integration methods provide a 

comprehensive framework for analyzing both linear and 

nonlinear systems. Traditional methods such as Central 

Difference, Newmark-beta, Houbolt, and Wilson-theta 

are widely used in structural dynamics [2, 5]. However, 

developing more efficient formulations that provide 

higher accuracy with larger time steps remains a 

persistent challenge for researchers [3]. 

The main objective of this study is to generalize the 

Gauss-Legendre integration method and combine it with 

Hermite interpolation formulas to create a novel 

approach for solving the equation of motion for SDOF4 

systems. The innovation lies in the development of 

specific Hermite interpolation coefficients and an 

optimized iterative algorithm that increases the order of 

accuracy to O(h6), whereas standard methods like 

Newmark typically provide O(h2) accuracy [4]. 

 Methodology 

The formulation of the proposed GLH-3P5 method 

requires four mathematical tools: time-domain 

discretization, Gauss-Legendre integration, Hermite 

interpolation formulas, and Taylor series predictors.  

2.1. Time-Domain Discretization 

The continuous time domain is discretized into N steps 

of length h t  . The discrete form of the equation of 

motion at time 1it   is expressed as: The basic elements 

of the extended abstract are listed below in the order in 

which they should appear: 

(1) 1 1 1 1( ) ( )i D i S i imu f u f u P       

Where m  is mass, Df  is damping force, and Sf  is 

restoring force. 

2.2. Gauss-Legendre-Hermite Integration 

                                                           
2 Ordinary Differential Equation 
3 Dynamic Equation of Motion 

The core of the algorithm involves calculating the 

response at three internal Gaussian points within each 

time step. These points are defined as 1 , 2  and 3  

based on the three-point Gauss-Legendre rule. The 

geometric representation of this method is illustrated in 

Figure 1, which shows the distribution of Gaussian points 

within the normalized time interval. 

 

Figure 1. Schematic diagram of the three-point Gauss-

Legendre method for sub-step integration 

2.3. Hermite Interpolation Coefficients 

Unique coefficients for velocity and displacement 

interpolation at internal sub-steps were developed for the 

first time in this study. These coefficients, based on 

function approximation theory, allow for high-precision 

estimation of the system's state using end-point 

information. The coefficients used in the proposed 

algorithm are summarized in Table 1. 

Table 1. Hermite interpolation coefficients for 

calculating velocity and displacement at sub-steps 

Velocity Interpolation coefficients 

1 3 15 219

2 25 227
A     

1 3 15 533

2 25 15124
B   

 

1

2
E   

Displacement Interpolation coefficients 

1 63 15 1070

2 500 1083
G   

 

1 63 15 82

2 500 6831
H   

 

1

2
M 

 

11 13 15 518

200 1000 4917
I   

 

11 13 15 409

200 1000 87934
J   

 

5

32
N 

 

4 Single Degree of Freedom 
5 Gauss-Legendre-Hermite 3Point 
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1 15 62

400 2000 13975
K   

 

15 67

2000 118898

1

400
L  

 

1

64
O 

 

 Results and Discussion 

Two numerical models were implemented in MATLAB 

to evaluate the GLH-3P method using the El Centro 

earthquake record (Figure 2). 

 

Figure 2. El-Centro earthquake record used in the loading of structural systems

3.1. Model I: Linear System  

A linear undamped system with a natural period of 0.113 

s was analyzed. The GLH-3P method provided results 

nearly identical to the exact Duhamel integral solution, 

whereas the Newmark and Wilson methods showed 

significant phase shift errors. As shown in Table 2, the 

RMS error for GLH-3P was significantly lower than that 

of conventional methods. 

Table 2. Comparison of maximum response and 

RMS error for Model I (Linear System) 

Evaluation 

Component 

Duhamel 

(Exact) 

GLH-3P 

(Proposed) 

Newmark-

β 

Wilson-

θ 

Max 

Displacement 

(cm) 

0.2618 0.2697 0.4612 0.4613 

Max Velocity 

(cm/s) 
5.7611 5.6972 7.1815 7.1812 

RMS Error 0.0879 0.1039 0.328 0.3278 

3.1. Model II: Nonlinear System 

A nonlinear damped system with a natural period of 0.08 

s and elastoplastic behavior with kinematic hardening 

was investigated. The proposed method demonstrated 

superior stability and accuracy in capturing the hysteresis 

loops compared to the Newmark method. Notably, the 

GLH-3P method does not require matrix inversion in the 

iterative cycle, reducing computational complexity for 

certain applications. 

 Conclusion 

The GLH-3P method provides a robust and efficient 

framework for the time-history analysis of SDOF 

structures. Key advantages include: 

1) Reduction of RMS error by up to 93% in 

nonlinear systems compared to the Newmark 

method. 

2) A unified formulation that handles both linear 

and nonlinear analysis without changing the 

underlying algorithm. 

3) High accuracy in identifying jump points and 

high-frequency oscillations in nonlinear 

response curves. 

4) While the method is more computationally 

intensive for high-frequency systems due to its 

iterative nature, its precision makes it a reliable 

tool for seismic analysis. 
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