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ABSTRACT

The dynamic response of structures under seismic loading is a critical issue in civil engineering that requires
precise and efficient analytical metheds. This research presents an efficient formulation for the nonlinear dynamic
analysis of structures termed the Gauss-Legendre-Hermite Three-Point (GLH-3P) method. This method is based
on the three-point implicit Gauss integration rule and employs third-order Hermite interpolation for sub-step
approximations. The proposed formulation is capable of analyzing systems with geometric and material
nonlinearities and covers various loading patterns. Results obtained from the new method were compared with
established techniques such as the semi-analytical Duhamel integral and the pseudo-analytical Newmark-beta and
Wilson-theta methods. The results indicate that the proposed method reduces the root mean square (RMS) error
by up to 18% in linear systems and up to 93% in‘nonlinear systems compared to the Newmark method. The
formulation demonstrates significant superiority in termsf accuracy, stability, convergence, and computational
cost.
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1. Introduction

The oscillatory motion of an ideal mass-spring-damper
system is modeled by a second-order ODE? known as the
DEOM?3. To predict the behavior of this system over
time, the ' DEOM must be solved within a specific time
interval. While analytical solutions are generally
preferred, they are often difficult to obtain in practical
engineering duewto irregular time-varying excitation
functions (e.g., earthquakes) and nonlinear system
behavior [1].

Step-by-step” time integration methods provide a
comprehensive framework for analyzing both linear and
nonlinear systems. Traditional methods such as Central
Difference, Newmark-beta, Houbolt, and Wilson-theta
are widely used in structural dynamics [2, 5]. However,
developing more efficient formulations that provide
higher accuracy with larger time steps remains a
persistent challenge for researchers [3]

The main objective of this study is'to generalize the
Gauss-Legendre integration method and combine'it with
Hermite interpolation formulas to .create a novel
approach for solving the equation of metion for SDOF#
systems. The innovation lies in the development of
specific Hermite interpolation coefficients and an
optimized iterative algorithm that increases the order.of
accuracy to O(h®), whereas standard methods like
Newmark typically provide O(h?) accuracy [4].

2. Methodology

The formulation of the proposed GLH-3P° method
requires four mathematical tools: time-domain
discretization, Gauss-Legendre integration, Hermite
interpolation formulas, and Taylor series predictors.

2.1. Time-Domain Discretization

The continuous time domain is discretized into N steps
of length h = At . The discrete form of the equation of
motion at time t,, is expressed as: The basic elements

of the extended abstract are listed below in the order in
which they should appear:
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Where m is mass, f, is damping force, and f¢ is
restoring force.

2.2. Gauss-Legendre-Hermite Integration

2 Ordinary Differential Equation
3 Dynamic Equation of Motion

The core of the algorithm involves calculating the
response at three internal Gaussian points within each
time step. These points are defined as z,, 7, and 7,

based on the three-point Gauss-Legendre rule. The
geometric representation of this method is illustrated in
Figure 1, which shows the distribution of Gaussian points
within the normalized time interval.

Figure 1. Schematic diagram of the three-point Gauss-
Legendre method for sub-step integration

2.3. Hermite Interpolation Coefficients

Unigue coefficients for velocity and displacement
interpolation at internal sub-steps were developed for the
first time in this study. These coefficients, based on
function approximation theory, allow for high-precision
estimation of the system's state using end-point
information.~The coefficients used in the proposed
algorithmrare’summarized in Table 1.

Table 1: Hermite interpolation coefficients for
calculatingvelocity and displacement at sub-steps

Velocity Interpolation coefficients
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3. Results and Discussion

Two numerical models were implemented in MATLAB
to evaluate the GLH-3P method using the El Centro
earthquake record (Figure 2).

El-Centro Ground Motion (t-au): PGA=312.762 (cm/sccz)
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Figure 2. EI-Centro earthgquake record used in the loading of structural systems

3.1. Model I: Linear System

A linear undamped system with a natural period of 0.113
s was analyzed. The GLH-3P method provided results
nearly identical to the exact Duhamel integral solution,
whereas the Newmark and Wilson methods showed
significant phase shift errors. As shown in Table 2, the
RMS error for GLH-3P was significantly lower than that
of conventional methods.

Table 2. Comparison of maximum response and
RMS error for Model I (Linear System)

Evaluation  Duhamel GLH-3P  Newmark- Wilson-
Component  (Exact)  (Proposed) B 0
Max

Displacement  0.2618 0.2697 0.4612  0.4613
(cm)

MaxVelocity 57611 569720 71815 7.1812
(cmis)

RMS Error 0.0879 0.1039 0.328  0.3278

3.1. Model I1: Nonlinear System

A nonlinear damped system with a natural period of 0.08
s and elastoplastic behavior with kinematic hardening
was investigated. The proposed method demonstrated
superior stability and accuracy in capturing the hysteresis
loops compared to the Newmark method. Notably, the
GLH-3P method does not require matrix inversion in the
iterative cycle, reducing computational complexity for
certain applications.

4. Conclusion

The GLH-3P method provides a robust and efficient
framework for the time-history analysis of SDOF
structures. Key advantages include:

1) Reduction of RMS error by up to 93% in
nonlinear systems compared to the Newmark
method.

2) A unified formulation that handles both linear
and nonlinear analysis without changing the
underlying algorithm.

3) Highsaccuracy in identifying jump points and
high-frequency  oscillations in  nonlinear
response curves.

4) While the method is more computationally
intensive forshigh-frequency systems due to its
iterative nature, its precision makes it a reliable
tool for seismic analysis.
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