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ABSTRACT 

Analysis of stability in columns as the main structural member has a special place in engineering research. In most of 

the past research, generally, researchers have studied the static buckling in columns (prismatic or non-prismatic) in 

(building frames or industrial beams). Static load capacity only expresses the static critical load capacity of members 

under gravity load. For the safe design of the structure, it is necessary to check the dynamic stability of the columns 

in the building frames under the vertical load of an earthquake. In this article, in a comprehensive model, the combined 

effect of inherent damping, floor mass and vertical earthquake load on the dynamic stability of columns in unrestrained 

moment frames is investigated. In fact, the proposed method is a combination of Julian-Lawrence static modeling and 

Bolotin dynamic modeling to consider the dynamic effects in the frame columns based on the finite element method. 

In the first step, the constitutive equation is extracted using Hamilton's method. In the next step, the response of the 

equation is checked using the finite element method with Hermitian three-degree interpolation functions for 50 

components. The results show that the inherent damping, concentrated mass and rotational stiffness of semi-rigid 

joints have a significant effect on the resonance frequency, effective length and dimensionless dynamic load factor. 

With the increase in inherent damping, rotational stiffness and concentrated mass, the graph of effective length 

changes is shifted to the left side of the excitation frequency axis. Considering the effects of inherent damping and 

concentrated mass in the modeling, 7% and 81%, respectively, affect the resonance frequency changes. There is an 

acceptable agreement between the results of the present article and previous research. 
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1.Introduction 

Structural stability has always played a vital role in the 

design of steel structures, particularly for slender 

members where buckling becomes a governing factor. 

While Euler’s classical theory laid the foundation for 

defining the critical buckling load, it was limited to ideal 

boundary conditions [1]. More realistic approaches later 

incorporated semi-rigid beam-to-column connections 

and elastic supports through equivalent spring models 

[2]. Further developments included creep buckling in 

viscoelastic columns modeled via Kelvin and Maxwell 

frameworks [3], buckling of various structural elements 

including tapered or stepped columns [4], and columns 

with variable cross-sections under different boundary 

conditions [5]. Analytical solutions using Hermite shape 

functions, virtual work principle, and energy-based 

methods provided accurate predictions for critical loads 

and natural frequencies [6]. Recent studies have 

extended to dynamic stability of columns under time-

dependent axial loads. Bolotin pioneered the concept of 

dynamic buckling in mechanical systems [7]. Later 

work included studies on graded nanobeams, 

viscoelastic fractional-order beams, and steel frames 

with semi-rigid joints under harmonic excitation [8]. In 

2023, Savin et al. investigated progressive collapse in 

RC frames under sudden column removal scenarios [9]. 

Kadim and Alzuaid validated FEM models for tapered 

RC columns, confirming improved load capacity [10]. 

Ozil et al. analyzed the dynamic stability of diamond-

shaped steel frames and found geometric form enhances 

resistance to external oscillations [11]. Fonseca (2024) 

revealed that non-uniform square hollow steel columns 

are more resilient to initial buckling than uniform ones 

[12]. Despite these contributions, dynamic buckling 

under vertical seismic loading remains underexplored in 

design codes such as Iran’s National Building 

Regulations [13]. Most prior research also overlooks the 

combined effect of inherent damping and floor mass 

concentration on column stability in unbraced steel 

frames. This research develops a unified model for 

analyzing dynamic buckling, effective length, and 

natural frequency of prismatic columns in unbraced 

steel moment frames, incorporating: 

 Vertical seismic effects modeled as harmonic 

axial loads, 

 Inherent material damping using Rayleigh’s 

method [14], 

 Semi-rigid beam-to-column joints via 

rotational springs, 

 Elastic boundary conditions. 

The governing equations are derived using Hamilton’s 

principle and energy method, with Hermite interpolation 

functions used to form the stiffness, geometric, mass, 

and damping matrices. The static buckling load and 

natural frequency are obtained through eigenvalue 

analysis. Finally, the dynamic critical load under 

varying excitation frequencies is determined using the 

Müller root-finding algorithm, with validation against 

prior literature. 

2. Methodology 

 

Figure 1: Column in an Unbraced Moment Frame 

Considering Lumped Floor Mass and Inherent Damping 

Effects 

As illustrated in Figure 1, a column belonging to an 

unbraced moment-resisting frame is considered, 

characterized by the moment of inertia I, modulus of 

elasticity E, cross-sectional area A, material density ρ, 

and length L. The column has a mass per unit length of 

ρA. The effect of inherent (material) damping is 

modeled using a damping coefficient C, while the 

inertial effect of the floor mass is represented as a 

lumped mass M applied at the top of the column. The 

column is assumed to be part of an unbraced steel 

moment frame, where point B (the top of the column) is 

free to undergo lateral displacement, i.e., has no lateral 

stiffness. The semi-rigid behavior of beam-to-column 

connections at the column ends (points A and B) is 

modeled using rotational springs with stiffness values 

KθA and KθB respectively. During seismic events, 

columns in such frames are subjected to dynamic loads 

induced by both lateral and vertical components of 

earthquake excitation. To incorporate the effects of 

vertical seismic acceleration, the column is loaded 

axially with a time-dependent axial force P(t), which is 

composed of a harmonic cosine component 

superimposed on a constant static axial load. This study 

analyzes the dynamic buckling of a prismatic column in 

an unbraced steel moment frame using the Finite 

Element Method (FEM). The modeling framework 

integrates: 
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 Inherent damping via the Rayleigh damping 

model 

 Concentrated mass (M) representing the floor 

mass 

 Rotational stiffness at ends using semi-rigid 

connections 

 Dynamic harmonic axial loading to simulate 

vertical seismic action 

2.1. Governing Equation 

 

The governing differential equation is derived using 

Hamilton’s principle. The total virtual work includes 

kinetic energy, strain energy, work by damping, 

concentrated mass, and boundary springs: 
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The strain energy includes the bending stiffness and 

axial load effects: 
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The damping is modeled as: 

C M K    (4) 

where α, β are Rayleigh coefficients. 

Using Hermite cubic interpolation functions and 

Galerkin’s method, the weak form is discretized and 

assembled into a global eigenvalue problem: 

2( ) 0gK K C M U      (5) 

Solving this yields the resonance frequencies and 

dynamic buckling loads as functions of damping, mass, 

and joint stiffness. 

3. Results and Discussion 

3.1. Effect of Boundary Stiffness and Mass 

The analysis was conducted with varying parameters to 

study their effect on dynamic buckling. The results 

confirm: 

 Increased concentrated mass significantly 

decreases the resonance frequency. 

 Higher damping shifts the resonance frequency 

leftward, reducing peak load capacity. 

 Rotational stiffness in semi-rigid joints 

improves dynamic stability. 

3.2. Parametric Study Summary 

Table1.Parametric Study Summary 

Parameter 
Change in Resonance 

Frequency 

Damping increase (ζ = 

4%) 
↓ 7% 

Mass increase (to 3 

Ton) 
↓ 81% 

Stiffness increase (Ga, 

Gb) 
↑ 13% 

3.3. Numerical Convergence 

The FEM model showed convergence for ≥ 20 elements, 

with minimal error compared to reference solutions 

(Julian & Lawrence, 1980; Bolotin, 1962). The study 

validated results using analytical formulas and 

numerical benchmarks across ideal and realistic 

boundary conditions. 

3.4. Sensitivity Analysis of Model Parameters on the 

Dynamic Response of the Column 

This section evaluates the influence of three key 

parameters—intrinsic damping, concentrated floor 

mass, and boundary stiffness of connections—on the 

dynamic stability of the column. A normalized 

sensitivity index was calculated for each parameter to 

quantify its effect on the column’s resonance frequency. 

The results show: 

 Concentrated floor mass has the greatest 

negative impact, significantly reducing the 

resonance frequency and dynamic stability. 

 Increasing boundary stiffness raises the 

resonance frequency, enhancing stability. 

 Intrinsic damping has a relatively smaller 

effect, causing a slight decrease in resonance 

frequency. 

These findings provide engineers with a clear 

prioritization for seismic retrofitting and earthquake-

resistant design. 

Table2. Normalized Sensitivity Index Table 
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Input 

Parameter 

Relative 

Change 

(ΔP/P) 

Response 

Change 

(Δf/f) 

Sensitivity 

Index S 

Intrinsic 

Damping ζ 
1 -0.068 -0.068 

Concentrated 

Floor Mass M 
1 -0.812 -0.812 

Boundary 

Stiffness 

Ga,Gb 

1 +0.133 +0.133 

4.Conclusion 

This study investigates the dynamic buckling, natural 

frequency, and effective length corresponding to the 

dynamic buckling of an unbraced column with elastic 

supports, considering intrinsic damping and 

concentrated mass (due to floor mass) under harmonic 

axial loading. Initially, the weak form of the governing 

differential equation was derived. Interpolation 

functions were employed as shape functions in the 

formulation, based on which the material stiffness, 

geometric stiffness, and mass matrices were obtained. 

Subsequently, the eigenvalue problem was solved using 

these stiffness matrices. The Müller root-finding 

technique was implemented via MATLAB coding to 

calculate the eigenvalues. 

 Key findings of the study are as follows: 

 The intrinsic damping coefficient significantly 

influences the variation of the effective length 

associated with dynamic buckling as a function 

of the excitation frequency. Increasing 

damping shifts the response curve to lower 

excitation frequencies. 

 The parameters GA  and GB representing the 

stiffness ratios of the column to beam at the 

semi-rigid connections at the base and top 

respectively, also considerably affect the 

effective length variation related to dynamic 

buckling versus excitation frequency. 

Increasing these stiffness ratios causes the 

response curve to shift towards lower 

frequencies. 

 Incorporating intrinsic damping in the 

equations affects the resonance frequency by 

up to 7% compared to the undamped model. 

 The concentrated mass (resulting from floor 

mass) has a pronounced impact on the effective 

length variation with respect to excitation 

frequency. Increasing the concentrated mass 

shifts the curve to lower frequencies, with its 

effect on the resonance frequency reaching up 

to 81%. 
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