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ABSTRACT  

Seepage prediction is one of the important tools in preventing erosion and destruction earth fill dams.In recent 

years, due to the uncertainty, complexity, and nonlinearity of seepage relationships, the use of artificial 

intelligence methods for estimation and prediction of this phenomenon has gained attention. The objective of this 

research is to estimate seepage in the Sattarkhan earth fill dam located in northwest Iran. To achieve this 

objective, in this research, the long-short-term memory network and the wavelet-deep network hybrid model 

have been used in two different scenarios, and the results obtained from these models have been compared with 

the feed forward neural network. The results obtained indicated that deep recurrent networks, in the modeling 

of the seepage phenomenon, outperformed the forward neural networks in terms of estimation accuracy. This 

can be attributed to their recursive connection between the output and input at each time step, as well as their 

ability to learn dependencies from previous time sequences. The modeling accuracy was improved by up to 7% 

as a result. Furthermore, the combined wavelet-deep network model demonstrated superior performance 

compared to other models, resulting in a 10% increase in modeling accuracy. In conclusion, the utilization of 

deep recurrent networks and the combined wavelet-deep network model in seepage modeling holds the potential 

to enhance estimation accuracy when predicting this phenomenon. 
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1. Introduction 

Given the limited water resources, dam construction has 

been one of the oldest civil engineering activities for 

water control, storage, and transfer. Earth fill dams, made 

from earthen materials, face challenges such as seepage, 

slope instability, and surface erosion. Seepage is the most 

critical issue, as uncontrolled seepage can lead to dam 

failure [1].Therefore, an optimal model for predicting 

future seepage is essential. While standard feed-forward 

neural networks (FNN) have been used in over 90% of 

artificial neural network applications for modeling water 

resource variables [2], their forward structure limits their 

effectiveness in dynamic systems. Recurrent neural 

networks (RNNs) have emerged as deep learning tools to 

address this limitation[3]. These intelligent models can 
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process complex and nonlinear data, making them 

suitable for hydrological time series modeling, such as 

seepage. RNNs and LSTM networks can accurately 

predict dynamic behaviors in hydrological systems by 

learning long-term patterns and identifying complex 

relationships in the data. Traditional methods often 

struggle with volatile and non-stationary data, but 

intelligent models like LSTM can overcome issues like 

gradient vanishing or exploding, significantly enhancing 

prediction accuracy. To better understand both short-

term and long-term behaviors in hydrological time series, 

wavelet transforms can decompose the data into several 

subseries. This study employs deep learning for seepage 

modeling and uses a hybrid wavelet-deep network model 

to enhance the results [4, 5]. 
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2. Methodology 

In this study, data from the piezometers of cross-section 

No. 2 of the Sattarkhan dam were used for modeling. The 

earth fill Sattarkhan dam, located 110 kilometers 

northeast of Tabriz on the Ahar Chai River, controls 

surface flows, providing drinking water for Ahar, 

irrigation for about 11,000 hectares, and industrial water 

for local industries. The piezometric data consists of 982 

daily readings taken from March 2017 to the end of 

2019. In the first scenario, the piezometric head was 

estimated using data from the piezometer itself and the 

reservoir water level, along with two other piezometers. 

In the second scenario, the water level was estimated 

without using previous readings from the target 

piezometer, relying instead on data from other correlated 

piezometers. Modeling began with a feed-forward neural 

network, which, despite its ability to approximate 

nonlinear functions, has limitations in dynamic system 

modeling due to its lack of connections from output to 

input. To address this, recurrent neural networks (RNNs) 

were employed, leveraging their recursive connections to 

utilize previous inputs. However, RNNs face challenges 

like the vanishing gradient problem, leading to the use of 

LSTM networks for more effective modeling. The 

structure of the LSTM cell is illustrated in Figure 1 and 

described by equations (1) to (6) [6]. 

 

Figure 1 - LSTM Cell  

(1)  1( . )t f t t ff W h X b    

(2)  1( . )t i t t ii W h X b    

(3)  1tanh( . )t c t t cC W h X b   

(4) 1* *t t tt tC i C f C    

(5)  1( . )t o t t oo W h x b    

(6) *t t th o C  

Wf, Wj, WC, and WO are learnable weight matrices, 

and bz, br, bh, and bo are biases. ft is the output of the 

forget gate, C̃t is the output of the input gate, ot is the 

output gate result, Ct is the cell state at time t, and ht is 

the final network output. On the other hand, 

preprocessing input data is a critical and complex step in 

modeling nonlinear systems, to select an appropriate 

combination of inputs. In this research, wavelet 

transform was used for data preprocessing in the design 

of the recurrent-wavelet hybrid model. A key factor in 

using this transform is selecting the appropriate mother 

wavelet. The choice of the mother wavelet is crucial in 

wavelet-neural network hybrid models and can 

significantly impact the modeling results. The essence of 

the mother wavelet lies in identifying the similarity 

between the analyzed time series and the wavelet sample 

used [7]. Since the time series studied had gradual 

changes, the Haar wavelet was used for data 

decomposition in this study. The Haar wavelet is one of 

the first and simplest wavelets. For training and 

evaluating the constructed models, the data was divided 

into two parts: training data and validation data. The first 

70% of the dataset was used for training, while the 

remaining 30% was used for validation. The network was 

trained using the training data, and the model’s output 

was compared with observational data to optimize the 

network's parameters. Finally, the trained network was 

evaluated using the validation data. In this study, 

common statistical indices such as Root Mean Square 

Error (RMSE), Determination Coefficient (DC), and 

Mean Absolute Error (MAE) were used. RMSE was 

selected for its precision in measuring prediction errors, 

DC for its ability to explain data variance, and MAE for 

its simplicity and robustness against outliers. These 

indices were used to evaluate the performance of the 

models employed in this research. 

3. Results and Discussion 

To perform the modeling, after selecting the input data, 

the data was first preprocessed; then, by defining the type 

of recurrent cell and the number of memory units, the 

architecture of the desired network was specified. With 

the definition of the loss function and optimizer 

algorithm, the defined network was fitted to the training 

data based on the number of iterations and batches 

determined for each iteration. To optimize the 

parameters, the model was evaluated using the training 

data. After the optimal parameters were determined, the 

validation data was used for prediction, and the defined 

models were validated using the specified evaluation 

criteria. For example, the DC value of the modeling 

performed in Scenario 1 for both piezometers is shown in 

Table 1. 

Table 1. The DC value for Scenario 1 modeling using 

feedforward and recurrent neural networks. 

Test 

Data 

Train 

Data 
Network  

0.91 0.94 FFNN 
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0.87 0.92 
Simple 

RNN 
Piezometer 

212 0.93 0.97 LSTM 

0.96 0.98 WLSTM 

0.82 1.00 FFNN 

Piezometer 

218 

0.83 0.99 
Simple 

RNN 

0.86 1.00 LSTM 

0.88 0.99 WLSTM 

According to the results in Table 1, after selecting the 

optimal structure through trial and error for the WLSTM 

model, the DC values for piezometers 212 and 218 in 

Scenario 1 were obtained as 0.96 and 0.88, respectively. 

In Scenario 2, the correlation coefficient was used to 

identify the two piezometers that were influential in the 

modeling. The radar chart in Figure 2 illustrates the 

correlation coefficients of piezometers 212 and 218 with 

other piezometers present in the Sattarkhan dam body, 

where piezometer 212 shows the highest correlation with 

piezometers 211 and 213, while piezometer 218 has the 

highest correlation with piezometers 215 and 217. After 

determining the inputs in Scenario 2, the modeling steps 

were carried out similarly to Scenario 1.  

 

Figure 2 - Correlation coefficient of piezometers 212 and 

218 with other piezometers. 

In modeling Scenario 2 using the RNN network, the 

DC values for piezometers 212 and 218 were obtained as 

0.96 and 0.71, respectively. For modeling with the LSTM 

network, the DC values for piezometers 212 and 218 

were found to be 0.97 and 0.74, respectively. In the next 

step, modeling using the wavelet-deep network hybrid 

model estimated the piezometric heights of piezometers 

212 and 218 with accuracies of 0.98 and 0.77, 

respectively. The modeling results indicate that recurrent 

networks provide higher estimation accuracy for 

hydrological time series, like seepage, compared to 

feedforward networks, making them suitable for dynamic 

system predictions. LSTM networks, which address the 

vanishing gradient problem, offer better accuracy than 

simple recurrent networks. While various artificial neural 

networks are effective for nonlinear hydraulic and 

hydrological modeling, their performance declines in 

time series with significant variations. Employing 

wavelet transforms as a preprocessing step improves 

modeling accuracy. In the second scenario of this 

research, piezometer water levels were estimated using 

data from other piezometers without relying on previous 

values, making this model particularly valuable in critical 

situations or when piezometers are out of service. This 

approach helps maintain prediction accuracy and 

reliability, especially when monitoring equipment 

malfunctions. 

4. Conclusions 

In this study, the seepage of the Sattarkhan Dam was 

modeled using feedforward and recurrent neural 

networks in two scenarios. The results showed that 

recurrent networks outperform feedforward networks in 

modeling time-dependent phenomena like seepage, 

increasing modeling accuracy. Wavelet transformation 

was applied in the preprocessing stage, leading to 

improved outcomes, with the combined recurrent-

wavelet model achieving up to a 10% increase in 

accuracy compared to models without wavelet 

transformation. Additionally, using simultaneous data 

alongside target data enhanced modeling accuracy, 

indicating that data from highly correlated piezometers 

can be effectively utilized in case of piezometer failure. 

Modeling the piezometer closer to the upstream of the 

dam yielded more accurate results due to greater 

correlation with upstream time series data. The study 

recommends similar modeling for other dam-related 

quantities, such as seepage. It also highlights the 

importance of tuning hyperparameters in deep networks 

and suggests using intelligent methods and algorithms for 

this purpose. Employing intelligent algorithms in deep 

learning modeling can reduce the time for 

hyperparameter tuning, enhance prediction accuracy, and 

improve overall model performance. 
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