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ABSTRACT: Real-time hybrid simulation (RTHS) is a form of testing where the physical component 
of structure communicate with numerical model which simulates the behavior of the rest of the structure. 
Interface forces between the experimental and computational substructure are imposed by an actuator. The 
resulting displacement and velocity of the experimental substructure are fed back to the computational 
engine to determine the interface forces applied to the computational and experimental substructures for 
the next time step. In this paper, the RTHS technique is used to conduct experiments with a numerically 
simulated structure and physically tested tuned liquid damper (TLD). One very important factor which 
causes instability in RTHS is the actuator’s inability to perform the commands from the simulator in 
real-time. In RTHS, an actuator dynamic is approximated by a pure time-delay, and the time-delay in 
the closed loop system causes inaccuracy results or even instability. Therefore, Delayed Differential 
Equation (DDE) is used to determine the critical time-delays depending on the TLD parameters. Then, 
the compound stability condition is investigated for a general case and the results show that the mass 
ratio has a lower limit for low delays and upper limit for high delays to remain stable. As frequency and 
amplitude ratios increase, the margin of stability for the mass ratio increases. 
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1- Introduction
Recently, the tuned liquid damper (TLD) is increasingly 

being employed to suppress the dynamic response of 
tall buildings due to its efficiency, low cost, and ease of 
implementation [1]. A TLD is generally designed as a 
rectangular or cylinder-shaped device, installed at the top of 
structures [2]. Real-time hybrid simulation (RTHS) is a novel 
experimental technique to investigate the dynamic behavior 
of structures [3]. Several studies introduced the RTHS method 
in detail for investigating the dynamic behavior of a TLD-
structure system [4, 5]. In the present study, the stability of 
RTHS with rectangular TLD is performed using eigen value 
approach. 

2- Mathematical Model
 A two-story structure with a TLD, modeled as a shear 

building, is shown in Fig. 1. The governing Eq. (1-3) is used 
to describe the vibration behavior of the structure.
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Fig. 1. Model of a two-story building with TLD 

The schematic of RTHS for TLD testing is 
illustrated in Fig. 2. 

Fig. 2. Schematic of a RTHS for damper testing 

The TLD is modelled as an equivalent solid mass 
damper with non-linear stiffness and damping as shown 
in Fig. 3. 
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hybrid simulation for TLD 

 

The non-dimensional amplitude is defined as Eq. 4  
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for deriving the state-space model of the structure, 
state vector (X) is selected according to Eq. (7). 

 1 2 1 2          TX x x x x x x=  (7) 

The state-space model of a linear time-invariant 
(LTI) system with a fixed time-delay (τ) can be written 
as Eq. (8). 

0 1( ) ( ) ( )X t A X t A X t= + −  (8) 

The characteristic equation of differential Eq. (8) is 
derived as follows. 

( )0 1det 0I A A e −− − =  (9) 

The non-dimensional parameters are defined as Eq. 
(10). 
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The matrices A0 and A1 are defined as Eq. 11 using 
nondimensional parameters. 
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The schematic of RTHS for TLD testing is illustrated in 
Fig. 2.

The TLD is modelled as an equivalent solid mass damper 
with non-linear stiffness and damping as shown in Fig. 3.

The non-dimensional amplitude is defined as Eq. 4 
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The nonlinear damping and stiffness ratios can be defined 
using non-dimensional amplitude as follows.
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Using matrices A0 and A1, the stability analysis of 
RTHS can be performed by solving delay differential 
Eq. 9. 
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the TLDs, on the stability of RTHS, is investigated.  
The root locus of the unstable root versus time-delay of 
the actuator is depicted in Fig. 4 using eigen value 
method. The stability margin in (Λ , τ)-plane and (μ , τ)-
plane are shown in Fig. 5 and Fig. 6, respectively. 
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Using matrices A0 and A1, the stability analysis of 
RTHS can be performed by solving delay differential 
Eq. 9. 

3. Results and Discussion 

The effect of equivalent mechanical properties including 
effective mass, natural frequency, and damping ratio of 
the TLDs, on the stability of RTHS, is investigated.  
The root locus of the unstable root versus time-delay of 
the actuator is depicted in Fig. 4 using eigen value 
method. The stability margin in (Λ , τ)-plane and (μ , τ)-
plane are shown in Fig. 5 and Fig. 6, respectively. 
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4. Conclusions 
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carried out by numerically simulating the structure and 
experimentally testing TLD device. It is found that the 
stability margin for time delay increases as non-
dimensional amplitude is increases. Moreover, the 
stability margin for time delay decreases as the mass 
ratio of TLD increases. The root locus also shows, half 
bifurcation due to increase of actuator time delay. 
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4- Conclusions
The effect of geometric sizes of TLD and time-delay of 

the hydraulic actuator on the stability of real-time hybrid 
simulation is discussed. The stability analysis is carried out 
by numerically simulating the structure and experimentally 
testing TLD device. It is found that the stability margin 
for time delay increases as non-dimensional amplitude is 
increases. Moreover, the stability margin for time delay 
decreases as the mass ratio of TLD increases. The root locus 
also shows, half bifurcation due to increase of actuator time 
delay.
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