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Solution of 3D elasticity problems using meshless local equilibrated basis functions
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ABSTRACT: A mesh-free method is presented for 3D elasto-static problems in homogenous media 
using Equilibrated Basic functions. The method treats satisfaction of the Partial Differential Equation 
independent of the boundary conditions, using a weak weighted residual integration over a cubic 
fictitious domain embedding the main domain. All 3D integrals break into the combination of 1D library 
integrals, resulting in the omission of the numerical integration. Chebyshev polynomials of the first kind 
are used to approximate the solution function, and exponential functions combined with polynomials 
are used as weight functions. The weights vanish over the boundaries of the cubic fictitious domain, 
removing the boundary integrals. The meshless method considers some nodes for the definition of the 
Degrees of Freedom throughout the domain. Each node corresponds to a local sub-domain called cloud, 
including 98 other nodes than the main central one. The overlap between adjacent clouds ensures the 
continuity of both the displacement as well as stress components, an advantage with respect to the   
formulations. The approximation order within each cloud is 4. Boundary conditions are applied over a 
set of boundary points independent of the domain nodes, granting the method the ability of application 
for arbitrarily shaped domains without the drawback of irregularity in the nodal grid. The definition of 
curved boundary surfaces is easily done by inserting the coordinates of some boundary points located on 
them. Three numerical examples with various geometries and boundaries are presented to challenge the 
method. The results are compared with either the available exact solutions or the FEM. 
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1- Introduction
To solve the Partial Differential Equations (PDEs) 

governing engineering problems, including the elasticity 
equations, there are various numerical modeling, among 
which the finite element method (FEM) is the most popular 
and widely used. In general, it is desired that the mesh is as 
ideal as possible and well-structured, since distorted geometry 
may have a negative impact on the solution accuracy. In 
order to overcome such drawbacks of mesh-based methods, 
meshless methods have been developed for solving PDEs 
in engineering and other sciences. The principal feature of 
meshless methods is the use of appropriate approximation 
schemes that can approximate the data specified on the 
randomly located nodes without the use of pre-defined mesh. 
Need for a truly meshless method leads to the development 
of Element Free Galerkin (EFG) method [1] and Mesh-
less Local Petrov-Galerkin (MLPG) method [2]. The use 
of Exponential Basis Functions (EBFS) to develop a local 
meshfree method which uses explicit relations to satisfy 
only PDEs with constant coefficients was considered in 
[3, 4]. In 2015, the Mesh-less Equilibrated Basis Functions 
(MLEqBFs) were presented in [5], which were extended to 

solve two-dimensional problems in heterogeneous media, 
including FGM problems. The most important innovations of 
the present paper compared to the previous related studies 
can be stated as: the first formulation of Equilibrated Basis 
functions (EqBFs) for three-dimensional elasto-static 
problems, development of the method in local meshless 
form, while all previous works were in boundary form, and 
separation of the main domain points and boundary points, 
which leads to an easier definition of arbitrary geometries as 
well as the absence of irregularity in the nodal grid, and thus 
its undesirable outcomes.

2- Methodology
The general form of the equilibrium PDE is considered 

according to (1),
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The homogeneous part of the solution to the above PDE 
is set as,   , ( )T
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Equation (2) is not able to satisfy the homogeneous part 
of the PDE, therefore it should be estimated in the form of 
the weighted residual integral over a fictitious cubic domain,
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This process will eventually lead to the formation of  a 
matrix equation as in (4) using all weight functions,
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If c is a member of the null-space of A, Equilibrated Basis 
Functions could be extracted. So, Equation (2) converts into 
(5), 
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Unknown coefficients d are found by applying the 
boundary conditions. Solving the problem in two parts, 
homogeneous solution (h) and private solution (p) is 
expressed in the form of (6),
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In the above relation, the index i indicates the allocation 
of the homogeneous solution to a cloud-centered at the i-th 
node. Establishing a relationship between the unknown 
coefficients of the solution series with the degrees of freedom 
of the nodes within the cloud, leads to the following, 
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In the above, the + sign indicates the Moore-Penrose 
pseudo-inverse. A relationship between the central node of 
the cloud and the other nodes leads to,
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For the total solution, the contribution of the homogeneous 
part should be calculated by considering the contribution of 
the particular solution in each of the cloud nodes, which leads 
to,
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For imposing the Dirichlet and Neumann boundary 
conditions, Equations (10) and (11) will be built at the 
corresponding boundary point, 
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By adding the boundary equations to the continuity 
equations, the overall matrix set is completed as follows.
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The rows of matrix K are made from Equations (9-11).
 

3- Results and Discussion
To show that the proposed method does not need to 

produce a structured nodal grid according to the geometry of 
the domain, a 3D elasticity problem with a hollow spherical 
domain subjected to inner pressure is investigated. The exact 
solution for stress and displacement is,
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Due to symmetry, only 1/8 of the whole domain is 
considered. Boundary conditions are shown in Figure 1. 
The material properties are 4 210 /E N m= and 0.3ν = . The 
approximation order within the clouds is 4, and the number 
of points in each cloud is 98.In order to measure the effects of 
the number and the arrangement of the nodes on the accuracy 
of the answer, three grid cases are selected to solve this 
problem, Grid-1: 912 nodes uniformly distributed, Grid-2: 
641 nodes non-uniformly distributed 641 nodes. Grid-3: 558 
nodes uniformly distributed.

The stress contour using both the exact solution and the 
present method is also shown in Figure 3. 

4- Conclusions
In the proposed method, the homogeneous PDE is 

satisfied independently of its boundary conditions using the 
weak form of the weighted residual integral. Equilibrated 
Basis functions are expanded as solution bases in sub-
domains called cloud, containing 98 nodes around a central 
node, with the approximation order equal to 4. Overlapping 
of the clouds ensures proper continuity of the displacement 
and stress throughout the domain.
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