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ABSTRACT: The optimal design and construction of sewage networks have always been considered 
by researchers and experts due to the very high costs of implementing this infrastructure. Being consisted 
of various variables and subjected to complex constraints, conventional mathematical optimization 
procedures are unlikely to be able to solve sewage network optimization problems. Thus, utilizing meta-
heuristic optimization algorithms is a must to tackle these problems. The shuffled frog leaping algorithm 
(SFLA) is one of the new meta-heuristic algorithms which has shown its ability to solve a large number 
of optimization problems. In this research, the capability of the SFLA in solving the problem of optimal 
design of sewage networks has been investigated. The diameter of the pipes as discrete decision variables 
and the depth of pipe placement as continuous decision variables were simultaneously considered in this 
study as unknowns. To this end, three sewage networks with 13, 41, and 65 decision variables have 
been selected as case studies. Various technical, operational, and hydraulic constraints are controlled 
by defining appropriate penalty functions. The results showed that for case studies 1 and 3, the SFLA 
decreased the minimum construction costs derived by GA, PSO, and SCE algorithms by 0.43 and 3.2 
percent respectively, and for the second case study, with the less number of function evaluations, SFLA 
has reached the equal objective function compared to other algorithms.
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1- Introduction
Sustainability is now an inseparable part of the goals 

in urban planning and management and water resources 
infrastructures play a crucial role in this regard. One of the 
main components of these infrastructures is the sanitary 
sewer network. These networks are costly to construct and 
maintain. Thus, the optimum design of these networks 
is essential to cut expenses. These costs are mainly due to 
piping and excavation and thus the optimization problem 
is developed around these variables. Literature consists of 
various methods and modeling of optimum design of sanitary 
sewer networks and these methods range from classic 
optimization methods such as dynamic programming and 
nonlinear programming to novel metaheuristic optimization 
algorithms. These optimization problems have proven 
to be hard to solve since it has highly nonlinear equations 
inherited both in the cost function and in the constraints. 
The complexity escalates quickly when the network grows 
in size. The other matter that hinders the solution of these 
problems is that the decision space consists of both discrete 
and continuous variables. Novel meta-heuristic algorithms 
that have proven useful in recent years usually operate in 
continuous decision space and can experience difficulties in 

converging to the global optimum. To alleviate this problem, 
in this research, the Shuffled Frog Leaping Algorithm (SFLA) 
is utilized to solve the optimum design of sanitary sewer 
networks. This algorithm has proven useful in various fields 
and since its capabilities were yet to be assessed in handling 
sanitary sewer networks design problems, it was chosen to 
solve three different optimization problems (presented in [1-
3]) and to conduct a comparison the results were compared to 
well-known optimization algorithms such as Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA) and Shuffled 
Complex Evolution (SCE).

2- Methodology
2- 1- Optimization problem

The main cost function is defined as Equation (1):
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Where f = the cost function; N = number of the pipes; M 
= number of the manholes Li= the length of the pipe i, Kp= 
unit cost of piping (including provision and installation) as 
a function of diameter, di, and iE  the average cover depth, 
of pipe i and Km = unit cost of manhole construction as a 
function of hj manhole depth of the joint j. 

The piping and excavation costs are computed using 
equations (2) till (5)
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In Equation (2) till Equation (5) Unit cost of piping for 
different case studies is denoted with a subscript of 1,2, and 3.

This optimization problem consists of various kinds of 
constraints. These constraints are presented in Equations (6) 
till (12)
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Qi = the discharge in node i where the inflow and outflow 
discharges are considered positive and negative respectively; 
Ni = number of pipes joined in node i; M = number of nodes 
of the network; Vi= velocity in pipe i; Vmin and Vmax = the 
minimum and maximum permitted velocities, respectively; 
Emin and Emax = the minimum and maximum required cover 
depths, respectively; lβ = relative flow depth in pipe i; minβ
and maxβ  = the minimum and maximum required relative flow 
depths respectively; y = flow depth; Sl = slope of pipe i; Smin= 
the minimum allowed slope and D  = list of commercially 
available pipes. 

As the flow in the pipes is a uniform steady flow type, 
Manning’s Equation governs the flow as Equation (13)
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                                 1,2,....,l N =  

(12) ld D                                            1,2,....,l N =  

 

(13) 
2 1
3 21

l l l lQ r s
n
=                    1,2,....,l N =   

 

 (13)

Where Ql = the design discharge of pipe l; n = Manning’s 
coefficient, lα  = cross-section of pipe l; rl = hydraulic radius 
of pipe l; sl = slope of pipe l.

2- 2- SFLA
Eusuff et al. proposed the shuffled frog leaping algorithm 

(SFLA) inspired by the social behavior of the frogs’ search 
for food [4]. This algorithm is an improved version of the 
Shuffled Complex Evolution (SCE) algorithm. The SFLA 
inherits two famous GA and PSO algorithms such that each 
frog is a representation of each chromosome in the GA. These 
frogs are divided into smaller complexes to create smaller 
swarms. The optimization occurs in two levels. At the first 
level, the frogs are influenced by their group members. At the 
second level, the frogs are inspired by other groups to find the 
best location for their food. The frogs update their position 
until at least one of the convergence criteria is satisfied.
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3- Results and Discussion
In this study, three different sanitary sewer networks are 

modeled and designed using the SFLA algorithm. These 
problems are of different layouts and sizes and thus provide 
a good example to assess the SFLA’s performance regarding 
the optimum design of these networks. Like other algorithms 
(GA, PSO, and SCE), the SFLA is run 20 times for each 
problem. Figure 1 presents the convergence curves of the 
SFLA for the best, worst and average results obtained during 
these 20 runs. This figure shows that in problems 1 and 2 
with relatively smaller size, the best, worst and average result 
is close to each other and the algorithm shows acceptable 
reliability. Although there is a difference in worst and best 
answers in the third problem, according to Table 1, the SFLA 
has shown a much superior performance both concerning the 
best result and the lower standard deviation compared to the 
other three algorithms. 
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2 37774 11402.3 150636 164989 129588 SFLA 
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