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ABSTRACT: One of the most important issues in the calculation of the bearing capacity of rock masses 
is the method of application of the rock mass failure criterion. The Hoek-Brown failure criterion is the 
most useful criterion in practical applications. For applying this criterion in the upper bound method of 
limit analysis, one should linearize it using the single or multi-tangential technique. In this paper, the 
method of linearization of the Hoek-Brown criterion is investigated to determine the bearing capacity 
of embedded footings on rock masses. Since different stress levels have existed in the rock mass body, 
the multi-tangential technique results in the best approximation of the nonlinear Hoek-Brown criterion. 
As a novelty for the current research, the embedment depth of the footing is considered directly in the 
upper bound formulations instead of replacing it with an equivalent surcharge. The obtained results 
show that considering the embedment depth of footings along with using the multi-tangential technique 
result in increasing the accuracy of the results. In the methods which consider the embedment depth as 
an equivalent surcharge, the extension of the failure lines through the rock mass above the footing base 
cannot be considered. 
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1- Introduction
The design of footings on rock masses involves 

investigating various aspects, one of which is the determination 
of bearing capacity. In this paper, the effect of linearization of 
Hoek-Brown criterion on the bearing capacity of rock masses 
was investigated using the upper bound method of limit 
analysis. The effect of footings embedment depth was also 
considered in the analyses. Finally, comprehensive sensitivity 
analyses were performed to determine the effects of different 
parameters on the bearing capacity of rock masses.

2- Methodology
The failure mechanism considered in the present paper 

is shown in Figure 1. Due to the symmetry, only the central 
wedge and half of the failure mechanism are shown. This 
mechanism has the capability of considering the embedment 
of the footing. The number of wedges in the mechanism was 
obtained during the optimization process in order to result in 
the best (lowest) value of the ultimate bearing capacity.

In this paper, the modified Hoek-Brown nonlinear failure 
criterion was used which is the most practically applicable 
criterion for analyzing rock mass behavior and provides a 
good agreement with the experimental results. Despite its 
original nonlinear form, this criterion was also linearized 
in analyzing stability problems. Two common methods 

were used by different researchers for linearizing the Hoek-
Brown criterion in the upper bound method which include 
the tangential line method [1-3] and the multi tangential 
technique [4-8]. In these two methods, the nonlinear Hoek-
Brown criterion is replaced by one or several tangential lines, 
respectively. Each one of these tangential lines has a unique 
slope and y-axis intercept, which correspond to the internal 
friction angle and the cohesion of the rock mass, respectively. 
Obviously, in the tangential line method, a constant value of 
the internal friction angle and the cohesion is obtained for the 
whole rock mass, whereas in the multi-tangential technique, 
different values of friction angle and cohesion are obtained 
for the rock mass according to the level of stress. 

In order to calculate the bearing capacity by the upper 
bound method, the total external work performed in the 
mechanism should be equated to the internal energy dissipated 
through the velocity discontinuity lines. By doing so, the 
equation of the ultimate bearing capacity of rock masses was 
obtained as follows:
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Where s is the Hoek-Brown parameter which 
depends on GSI (Geological Strength Index), σci is the 
uniaxial compressive strength of the intact rock, q is the 
surcharge, γ is the unit weight of the rock mass, B is the 
footing width and DN  , D

qN , DN  , are the bearing 

capacity factors. Since the uniaxial compressive 
strength of the intact rocks is commonly high, the effect 
of surcharge and unit weight of the rock masses do not 
have a considerable effect on the bearing capacity. 
Therefore, Eq. (1), changes to the following form: 
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3. Results and Discussion 

The upper bound formula of the bearing capacity 
should be optimized to achieve the best (lowest) 
magnitude of the bearing capacity. Using the 
optimization process, the optimum number of wedges 
was obtained equal to 19. The results of this study were 
compared with the results of other researchers who have 
used the multi-tangential technique. Assuming γ = 21 
kN/m3, D = 0, and GSI = 30, Figure 2 shows that the 
bearing capacity obtained from the present study is 
more than that of AlKhafaji et al. [7] method. The 
maximum difference between these two methods is 
equal to 14%. Also, the bearing capacity obtained from 
the present paper is lower than that proposed by Saada 
et al. [4], with the maximum difference equal to 22 %.  

Figure 3 compares the results of the present paper 
with that of Imani and Aali [3] which is based on the 
tangential linearization of the Hoek-Brown criterion. It 
was assumed that the Hoek-Brown constant, mi, is equal 
to 10. It is clear that using the multi-tangential technique 
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on GSI (Geological Strength Index), σci is the uniaxial 
compressive strength of the intact rock, q is the surcharge, 
γ is the unit weight of the rock mass, B is the footing width 
and DN σ , D

qN , DN γ , are the bearing capacity factors. Since 
the uniaxial compressive strength of the intact rocks is 
commonly high, the effect of surcharge and unit weight of the 
rock masses do not have a considerable effect on the bearing 
capacity. Therefore, Eq. (1), changes to the following form:
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4. Conclusion 

In this paper, the effect of linearization of Hoek-
Brown criterion on the bearing capacity of rock masses 
was investigated using the upper bound method of limit 
analysis. A formula was proposed for the bearing 
capacity of rock masses considering the multi-tangential 
technique for linearizing the Hoek-Brown criterion. The 
obtained results show that linearizing the nonlinear 
Hoek-Brown criterion with a single line, i.e., the 
tangential method, results in unreliable bearing capacity. 
However, the multi-tangential technique can 
considerably improve the bearing capacity of rock 
masses. Among different parameters affecting the 
bearing capacity factor, DN  , GSI, mi, and D have the 
highest influence.  
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increases with increasing the GSI from 10 to 30, and decreases 
from 30 to 90. The same trend can be seen in the previous 
studies [1-3, 8, 9]. For a constant value of GSI, the DN σ are 
larger for higher Df/B ratios.

4- Conclusion
In this paper, the effect of linearization of Hoek-Brown 

criterion on the bearing capacity of rock masses was 
investigated using the upper bound method of limit analysis. A 
formula was proposed for the bearing capacity of rock masses 
considering the multi-tangential technique for linearizing 
the Hoek-Brown criterion. The obtained results show that 
linearizing the nonlinear Hoek-Brown criterion with a single 
line, i.e., the tangential method, results in unreliable bearing 
capacity. However, the multi-tangential technique can 
considerably improve the bearing capacity of rock masses. 
Among different parameters affecting the bearing capacity 
factor, DN σ , GSI, mi, and D have the highest influence. 
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