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ABSTRACT: Excessive use of groundwater resources has put the aquifers in critical situations. This 
study provides a framework for using the Bayesian network for groundwater level estimation and 
aquifer hydrograph analysis. Five variables, temperature, the groundwater level in the previous month, 
groundwater withdrawal, aquifer feeding, and rainfall were used as input variables, and the groundwater 
level in the current month was used as an output variable in the Bayesian network simulations. A 10-
year statistical data, 8 years of data for model training and 2 years of data for model validation were 
used. The Bayesian network model was implemented and analyzed in three explicit, clustering and 
two- and three-month delay states. Explicit simulation results showed that most of the wells have a good 
correlation between the simulation and observed data. Clustering results were less accurate than explicit 
ones. In the third case, two and three months delay data was used for simulations. The results showed 
that the correlation between observed and simulated groundwater levels decreased. At 1, 2 and 3 months 
delay statuses, Root Mean Square Error was 1.87 m, 3.76 m, and 6.42 m, respectively. Therefore, the 
one-month lag time was chosen for the simulations and the aquifer hydrograph was used to evaluate and 
estimate total aquifer variations. The results indicate the appropriate accuracy of the aquifer parameters 
estimation. 

Review History:

Received: Oct. 06, 2020
Revised: Jun. 01, 2021
Accepted: Jun. 02, 2021
Available Online: Jun. 19, 2021

Keywords:

Bayesian network

Clustering

Groundwater level

Qazvin aquifer

Simulation

171

1- Introduction
Excessive exploitation of groundwater in conditions 

where it is not possible to harvest surface and groundwater 
in combination has caused irreparable damage to water 
resources. Therefore, planning to identify the current state of 
aquifers is important. 

In the last decade, the use of the Bayesian network 
model for forecasting in various fields of water engineering, 
including integrated water resources management in the 
catchment [1], groundwater quality [2], drought forecast 
[3], River flow forecasting [4], and groundwater modeling 
[5] have been developed. Choubin et al. [6] evaluated the 
application of regular Bayesian neural networks to model 
groundwater levels. Their results showed that this model has 
a very good performance in modeling the groundwater level. 
Molina et al. [7] proposed a decision support system based on 
the dynamic Bayesian network (DBNs) to assess the aquifer 
affected by groundwater use and climate change. The use of 
a Bayesian network in decision networks due to the nature of 
input data and their uncertainty could increase the accuracy 
of work. 

2- Methodology
In this study, the groundwater level in the Qazvin aquifer 

has been simulated by using the Bayesian network intelligent 
method based on probability reception.

2- 1- Study area
The study area of the Qazvin aquifer is located in the 

northwestern half of the salt lake catchment area. The area 
of the alluvial aquifer is 3683 square kilometers. The average 
groundwater level dropdown in the 15-year period (1996-
2011) was 1.33 meters per year. There are 56 observation wells 
in this area that have a 10-year time series of groundwater 
level data that were used for modeling. Figure 1 shows the 
location of these observation wells in the Qazvin aquifer.

2- 2- Model validation
The model was validated using four statistical methods, 

including R square, Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and Predictive accuracy index (P).

2- 3- Identifying the input parameters to the Bayesian 
network and how to model

Temperature, rainfall, aquifer feeding, groundwater 
abstraction, and water level in the previous month were 
identified as sensitive parameters for the model and used to 
predict the water level in the current month. The structure of 
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the Bayesian network using the HUGIN model was compiled 
and modeled as Figure 2.

3- Results and Discussion
3- 1- Simulation of groundwater level in the explicit state

If the data from the previous month in the aquifer were 
used to estimate its groundwater level in the simulation 
model, the results showed that there is a good agreement 
between the observed and simulated groundwater level in 
most observation wells. In this case, 39 observation wells 
have a correlation coefficient above 90%, which indicates the 
appropriate accuracy of the Bayesian network for simulation 
in the monthly time step with a delay of one month before.

3- 2- Groundwater surface simulation in clustering mode
Results of the clustering model showed that most 

observation wells have very low accuracy in simulation. 
Therefore, the clustering method is inaccurate compared 
to the explicit mode. In general, the results indicate that 
the clustering model cannot enter data for simulation. It is 
worth mentioning that Kardan Moghaddam and Roozbahani 
[8] and Ebrahimi et al. [9] also expressed the accuracy of 
the clustering method is lower than the explicit method in 
simulating the groundwater level using the Bayesian network.

3- 3- Simulation of groundwater level in the explicit state 
with time delay

Groundwater level simulation was performed in Qazvin 
aquifer using Bayesian network with 2 and 3 months ago 
data. For example, the observed and predicted groundwater 
levels for an observation well were shown in Figure 3. As 
can be seen, the one-month delay was more accurate than the 
other two modes and provided good results.

4- Conclusions
In this study, the Bayesian network model was evaluated 

in three modes using explicit, clustering, and explicit 
approaches with time delays of one, two, and three months 
to predict groundwater level in the Qazvin aquifer. Five 
parameters of precipitation, temperature, aquifer recharge, 
aquifer discharge, and groundwater level in the previous 
month were defined as input variables and groundwater 
level in the coming month as output variables. In the case 
of explicit mode, the results showed that the correlation 
coefficient between the observed and simulated groundwater 
level was 0.82 and the RMSE was estimated to be 1.87 m. In 
this case, the Bayesian network has the appropriate accuracy 
in simulation in the monthly time step with a delay of one 
month before. The simulation accuracy in the clustering 
mode was less than the explicit mode. The general analysis 
of the results showed that with increasing the time delay, the 
correlation coefficient between the observed and simulated 
results decreases. So that the average correlation coefficient 
in the time delay of one month is equal to 0.82, in the delay of 
two months is 0.73 and in the delay of three months is 0.64. 
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4. Conclusions 

In this study, the Bayesian network model was 
evaluated in three modes using explicit, clustering, and 
explicit approaches with time delays of one, two, and 
three months to predict groundwater level in the Qazvin 
aquifer. Five parameters of precipitation, temperature, 
aquifer recharge, aquifer discharge, and groundwater 
level in the previous month were defined as input 
variables and groundwater level in the coming month as 
output variables. In the case of explicit mode, the results 
showed that the correlation coefficient between the 
observed and simulated groundwater level was 0.82 and 
the RMSE was estimated to be 1.87 m. In this case, the 
Bayesian network has the appropriate accuracy in 
simulation in the monthly time step with a delay of one 
month before. The simulation accuracy in the clustering 
mode was less than the explicit mode. The general 
analysis of the results showed that with increasing the 
time delay, the correlation coefficient between the 
observed and simulated results decreases. So that the 
average correlation coefficient in the time delay of one 
month is equal to 0.82, in the delay of two months is 
0.73 and in the delay of three months is 0.64. Also, the 
RMSE is 1.87 m, 3.76 m, and 6.42 m in one, Two, and 
three-month delay, respectively. Therefore, the longer 
time of data interval for prediction has the lower 
accuracy of the simulation results. In general, 

groundwater level prediction has better results in the 
Qazvin aquifer by using a delay time step (one month) 
in the Bayesian network model. 
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Also, the RMSE is 1.87 m, 3.76 m, and 6.42 m in one, Two, 
and three-month delay, respectively. Therefore, the longer 
time of data interval for prediction has the lower accuracy 
of the simulation results. In general, groundwater level 
prediction has better results in the Qazvin aquifer by using a 
delay time step (one month) in the Bayesian network model.
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