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ABSTRACT: The current research seeks to investigate a novel method for reducing the computational 
costs of concrete modeling in the meso-scale. Two separate scales, macro and meso, were used to 
evaluate concrete behavior. As the stress distribution at the macro scale can be a good indicator to 
determine the crack critical zones (onset and growth of crack), the numerical model is analyzed at the 
macro scale using the extended finite element method (XFEM), and then, critical zones are specified 
in each step using macro-optimization. Afterward, the sum of the zones is modeled in the main model 
at the meso-scale. At the meso-scale, the three parts of aggregate are modeled with linear behavior, and 
cement mortar and transfer zone with nonlinear behavior. Aggregates are distributed in cement mortar 
by a random algorithm and Fuller curve in a circular shape. For meso-scale discretization, the piecemeal 
discretization method was used, considering the adhesive zone for all elements. Using this method, 
crack onset and growth are properly modeled. To validate this method, two numerical examples were 
examined in 2D. The numerical analysis results were in perfect agreement with the laboratory results, 
and the volume of the calculations was reduced by an average of 35% while maintaining accuracy.
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1- Introduction
The structure of concrete at the meso-scale plays a critical 

role in the onset and spread of cracks. Due to the great impact 
of the internal structure of heterogeneous materials on their 
mechanical behavior, various models for concrete behavior 
at the meso-scale have been proposed nowadays with the 
help of numerical calculation methods [1-4]. Different 
algorithms have been established to produce aggregate 
shape and location [5]. Various algorithms are proposed 
for optimization methods. One of these algorithms is to 
minimize von Mises stress or to maximize stiffness in the 
studied structure under applied restrictions [6]. In the current 
research, as meso-scale analysis is computationally highly 
expensive, some parts of the structure that are prone to crack 
growth (critical zones) are identified at the macro scale using 
topology optimization algorithm and XFEM. Critical zones 
are modeled at the meso-scale and other zones at the macro 
scale.

2- Methodology
To model a numerical sample on a meso-scale using 

topology optimization, the following steps must be pursued:  
(a) Numerical sample modeling on macro-scale using 

macro discretization and solution via XFEM. (b) Save the 
stress and strain results of each step relevant to the previous 
stage. These results are entered as input (initial stress and 

initial strain) in the optimization model, and the numerical 
model is analyzed under topology optimization. (c) Save all 
the results of topology optimization analysis and extraction 
of the whole material (critical stress levels) required in 
each step, taking into account crack propagation. (d) Meso-
scale modeling using the results of topology optimization. 
In this stage, the areas required for topology optimization 
are modeled as meso and the rest of the areas as macro. (e) 
Distribution of aggregates at meso-scale, design of fractional 
discretization, numerical model analysis and comparison of 
numerical model results using topology optimization, and 
modeling of the whole numerical sample at meso-scale. It 
should be noted that FEM and XFEM available in Ansys 
software were used in the present study, and the topology 
optimization part was coded with Fortran language and 
added in the form of macro to Ansys software to be able to 
specify the required parts using the results of the XFEM at 
each step. In addition, the discretization part was produced 
by coding in Fortran programming language.

3- Results and Numerical examples 
(a) Crack propagation in concrete beam under three-

point bending 
In this example, crack propagation in the concrete beam 

was investigated in 2D using topology optimization. Two 
samples of the beam in question were experimentally tested 
by Skarzianski et al. [7]. To compare the results, the numerical 
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model that was fully modeled on the meso-scale was 
designated as Model 1 (Direct Meso-scale), and the numerical 
model that was modeled using numerical optimization on the 
meso-scale was designated model 2 (Adaptive Meso-scale).

(b) Crack propagation in concrete beam under four-
point bending

In this example, crack propagation in concrete beams under 
four-point bending was investigated in 2D using topological 
optimization. Two examples of this beam were tested in the 
laboratory by Galvez et al. [8]. 
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heterogeneous materials on their mechanical behavior, 
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Figure 1. (a) Crack propagation in DM numerical model, 
(b) Crack propagation in AM numerical model, (c) Force-

CMOD 

(b) Crack propagation in concrete beam under four-
point bending 

In this example, crack propagation in concrete 
beams under four-point bending was investigated in 2D 

Fig. 1. (a) Crack propagation in DM numerical model, (b) Crack 
propagation in AM numerical model, (c) Force-CMOD

The paper size for the extended abstract is A4 with 2.5 
cm margins from top and bottom as well as 2 cm margins 
from left and right. It should be divided into two columns 
with 8 cm in width. The space between the columns should 
be 1 cm.

4- Conclusions
A numerical method for concrete beams modeling at meso-

scale was presented. This method works on two separate 
scales, macro and meso. The model was first analyzed at the 
macro scale using the XFEM, and the results of crack analysis 

 

using topological optimization. Two examples of this 
beam were tested in the laboratory by Galvez et al. [8].  
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Figure 2. (a) Crack propagation in DM numerical model, 
(b) Crack propagation in AM numerical model, (c) Force-

CMOD 
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4. Conclusions 

A numerical method for concrete beams modeling at 
meso-scale was presented. This method works on two 
separate scales, macro and meso. The model was first 
analyzed at the macro scale using the XFEM, and the 
results of crack analysis and growth were stored at each 
step (stress, strain and crack growth); these results were 
entered as input into the macro topology optimization 
using maximum stiffness formulation. Therefore, in 

each step of the macro-scale analysis, the model was 
analyzed using the topology optimization method, and 
critical stress zones were identified. In the current study, 
two numerical samples were modeled in 2D by this 
method on meso-scale. Crack onset and growth in both 
models were in good agreement with laboratory results. 
In general, this method has the following two 
advantages: 

1- Conformity of the general pattern of crack growth 
with laboratory results. 

2- Reduction in computational costs on the meso-scale 

In two numerical samples, thanks to topology 
optimization, the computational cost for three-point 
beam and four-point beam reduced by 32.8% and 
37.3%, respectively, in comparison with the overall 
modeling ratio at the meso-scale. 
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and growth were stored at each step (stress, strain and crack 
growth); these results were entered as input into the macro 
topology optimization using maximum stiffness formulation. 
Therefore, in each step of the macro-scale analysis, the model 
was analyzed using the topology optimization method, and 
critical stress zones were identified. In the current study, two 
numerical samples were modeled in 2D by this method on 
meso-scale. Crack onset and growth in both models were 
in good agreement with laboratory results. In general, this 
method has the following two advantages:

1- Conformity of the general pattern of crack growth with 
laboratory results.

2- Reduction in computational costs on the meso-scale
In two numerical samples, thanks to topology optimization, 

the computational cost for three-point beam and four-
point beam reduced by 32.8% and 37.3%, respectively, in 
comparison with the overall modeling ratio at the meso-
scale.
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