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ABSTRACT: Having the exact values of boundary conditions is one of the effective ways to develop 
precise groundwater models. In the present study, the exact value of constant head boundaries in the 
Birjand aquifer is specified using particle filter linked to meshless groundwater model. Particle filter, 
known as one of the common data assimilation methods, applies to dynamic systems in order to improve 
performance. Meshless model, one of the numerical models that do not mesh the problem domain, 
enforces the governed equation to the nodes. Birjand aquifer, with an almost 269 km2 area, has 190 
extraction and 10 observation wells. There are also nine inflow and one outflow regions with constant 
head boundary conditions, including 105 boundary nodes. In this research, after determining the lower 
and upper bounds of groundwater head for each node, the exact values of this parameter are computed. 
Finally, the simulated groundwater head was compared with observation data. The closeness of the 
achieved results to the observation data showed the performance of the engaged method, as the results 
indicated a significant decrease in RMSE occurs just with the usage of particle filter linked to the 
meshless model. RMSE value reduced to 0.386 m as its previous value was around 0.757 m. Results 
also showed that the model was more accurate when the number of particles in the particle filter was 
increased. The RMSE value for 500, 700 and 1000 particles were 0.484, 0.401 and 0.386m respectively..
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1- Introduction
Groundwater is one of the main sources of fresh water 

in all regions and the only source of water supply in arid 
and semi-arid regions of the world. Nowadays, due to 
the excessive extraction of groundwater, these resources 
endanger intensely [1]. Therefore, Groundwater flow 
simulation in aquifers is the best way to recognize its 
behavior undoubtedly. Many numerical methods have been 
used for this aim. Meshless local Petrov-Galerkin (MLPG), 
categorized as a weak form method, is used in this study.     

The independency of this method removes the drawbacks 
of mesh based methods e.g. finite difference method (FDM) 
and finite element method (FEM) [2]. Besides of the 
groundwater simulation procedure, uncertainty assessment 
must be considered as well. Many researches is carried out 
with the purpose of uncertainty assessment. Hamraz et al. 
(2015), Abedini et al. (2017) and Du et al. (2018) used GMS 
software and GLUE method in order to simulate groundwater 
flow and assessment the uncertain parameters.

In the present study, a new method i.e. particle filter 
known as the online calibration method is linked to the 
meshless local Petrov-Galerkin simulation model to find the 
optimal values of constant head boundaries. The purpose of 
this study is to improve the accuracy of simulation results. 
This model is used for the first time in this field. 

2- Methodology
2- 1- Particle Filter
A particle filter, known as a powerful estimation method, 

computes the probability density function of a random 
process and also estimates the exact state of the object in the 
future time based on the states and observations of previous 
times. The particle filter makes some estimates for the state of 
the object to select the best one [3].

To this end, in the initial step, particles are scattered in the 
space which its dimension equals to the number of parameters 
that must be estimated. Each particle is assigned with a 
weight value. This weight value in the first step is equal for 
all particles around (1/N) (N is the number of the particles 
scattered in state space) [4]. In the next step, the weight value 
depending on the position of the particle is updated. Once the 
weight of each particle is determined, to prevent degeneracy 
occurrence, re-sampling method is carried out. 

2- 2- Meshless Local Petrov-Galerkin (MLPG)
MLPG is a weak form of meshless methods presented in 

1998 by Atluri and Zhu (1998) to solve the potential equation. 
This method is generally used in fluid mechanics and involves 
two functions: a weight function (cubic spline) and moving 
kriging.
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2- 3- Groundwater flow equation in the unconfined 
aquifer

Based on the Dupouit assumption, the governed equation 
of groundwater flow in a transient condition is stated in Eq. 
1 [5]:
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Here, 𝐻𝐻 represents groundwater head [L], 𝑘𝑘 stands for 
hydraulic conductivity coefficient [L/T],  𝑄𝑄 denotes the 
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𝑆𝑆𝑦𝑦 is specific yield. 
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boundaries are obtained, and, the groundwater table is 
computed using the achieved optimal values. Figure 1. 
shows the results of PF-MLPG, MLPG, FDM and 
observation data. In figure 1, the graphs show the high 
correspondence of PF-MLPG method (yellow line) to the 
observation data (black line). This fact clearly indicates 
the high accuracy of PF-MLPG method due to the usage 
of optimal values for constant head boundaries.     

 
(a) 

 
(b) 
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Here, H represents groundwater head [L], k stands for 
hydraulic conductivity coefficient [L/T],  Q denotes the 
discharge (+) or recharge (-) rate [L/T], and q stands for 
the distributed flow, e.g. precipitation and evaporation. Sy 
is specific yield.
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where 

 

where ℎ𝑜𝑜𝑜𝑜𝑡𝑡 ,  ℎ𝑠𝑠𝑜𝑜𝑡𝑡 , ℎ𝑜𝑜̅̅ ̅ are the level of observed groundwater 
and the simulated and mean of the observed values, 
respectively, n and m are the number of piezometers and 
the number of time steps. Table 1 shows the achieved 
results. 

Table 1. Calculation of errors 

 
PF-MLPG 

(1000 particles) 
(m) 

FDM(m) MLPG 
(m) 

Mean error (m) -0.061 0.159 -0.12 
Mean Absolute 

error (m) 0.298 1.434 0.573 

Root mean 
square error (m) 0.386 1.197 0.757 

RMSE is the main index for the evaluation of accuracy 
[9]. Based on Table 1, the results of PF-MLPG are more 
accurate than FDM and MLPG methods due to its lower 
value of RMSE. Also, the performance of PF-MLPG 
method with the different numbers of particles is 
investigated in Table 2. RMSE value decreases while the 
number of particles increases. The model also runs for 
2000 particles. However, its results are as the same of 
1000 particles.  

Table 2. Calculation of errors 

 PF-MLPG (500 
particles) (m) 

PF-MLPG (700 
particles) (m) 

Mean error (m) -0.101 -0.083 
Mean Absolute 

error (m) 0.416 0.332 

Root mean square 
error (m) 0.484 0.401 

4. Conclusions 

Particle filter, known as one of the data 
assimilation methods, is linked to the meshless local 
Petrov-Galerkin flow model to find the best values of 
constant head boundaries of a real aquifer. In the first 
step, a set of particles with the same weight values (1𝑁𝑁) are 
generated in the state space. The dimension of state space 
are equal to the number of uncertain parameters. The 
studied region is Birjand unconfined aquifer which is 
located in South-Khorasan province. Finally, the optimal 
values of constant head boundaries for boundary nodes 
are obtained. Mean, mean absolute and root mean square 
error indices are calculated for PF-MLPG, MLPG and 
FDM methods. The RMS errors are 0.386, 0.757 and 
1.197m for PF-MLPG, MLPG and FDM, respectively. 
The results also reveal that the RMS error decreases with 
increasing the number of particles. 

References 

[1]  Nayak, P., SatyajiRao Y., Sudheer, K., 2006. 
"Groundwater level forcasting in a shallow aquifer 
using artificial," Water Resources Management, 20, 
pp. 77-90.  

[2]  Liu, G. R., Gu Y. T., 2005, An introduction to 
Meshfree Methods and Their Programming, 
Singapore: Springer.  

[3]  Hamraz, B. S., Akbarpour, A., Pourreza Bilondi M., 
Sadeghi Tabas, S., 2015. "On the assessment of 
ground water parameter uncertainty over an arid 
aquifer," Arabian Journal of Geosciences, 8, pp. 
10759-10773.  

[4]  Abedini, M., Ziai, A. N., Shafiei, M., Ghahraman, B., 
Ansari H, Meshkini, J., 2017. "Uncertainty 
Assessment of Groundwater Flow Modeling by Using 
Generalized Likelihood Uncertainty Estimation 
Method (Case Study: Bojnourd)," Iranian Journal of 
Irrigation and Drainage, 10(6), pp. 755-769.  

[5]  Du, X., Lu, X., Hou J., Ye X., 2018. "Improving the 
Reliability of Numerical Groundwater Modeling in a 
Data-Sparse Region," Water, 10(3), pp. 289-304.  

[6]  Arulampalam, S., Maskell, S., Gordon N., Clapp, T., 
2002. "tutorialon particle filters for Online 
nonlinear/nongaussian Bayesian tracking," IEEE 
Transaction Signal Process, 50(2), pp. 174-188.  

[7]  Fearnhead P., Kuensch, H. R., 2018. "Particle Filters 
and Data Assimilation," Annual Review of Statistics 
and Its Application, 5(1), pp. 421-449.  

[8]  Dupouit, J., 1863. Estudes Theoriques et Pratiques sur 
le Mouvement desEaux, Paris: Dunod.  

[9]  Mohtashami, A., Akbarpour A., Mollazadeh, M., 
2017. "Development of two dimensional groundwater 
flow simulation model using meshless method based 
on MLS approximation function in unconfined aquifer 
in transient state," Journal of Hydroinformatics, 19(5), 
pp. 640-652.  

 

are the level of observed groundwater 
and the simulated and mean of the observed values, 
respectively, n and m are the number of piezometers and the 
number of time steps. Table 1 shows the achieved results.

RMSE is the main index for the evaluation of accuracy 
[9]. Based on Table 1, the results of PF-MLPG are more 
accurate than FDM and MLPG methods due to its lower 
value of RMSE. Also, the performance of PF-MLPG method 
with the different numbers of particles is investigated in 
Table 2. RMSE value decreases while the number of particles 
increases. The model also runs for 2000 particles. However, 
its results are as the same of 1000 particles.

 

     In the present study, a new method i.e. particle filter 
known as the online calibration method is linked to the 
meshless local Petrov-Galerkin simulation model to find 
the optimal values of constant head boundaries. The 
purpose of this study is to improve the accuracy of 
simulation results. This model is used for the first time in 
this field.  

2. Methodology 
2.1 Particle Filter 

A particle filter, known as a powerful estimation 
method, computes the probability density function of a 
random process and also estimates the exact state of the 
object in the future time based on the states and 
observations of previous times. The particle filter makes 
some estimates for the state of the object to select the best 
one [3]. 

To this end, in the initial step, particles are 
scattered in the space which its dimension equals to the 
number of parameters that must be estimated. Each 
particle is assigned with a weight value. This weight 
value in the first step is equal for all particles around (1𝑁𝑁) 
(N is the number of the particles scattered in state space) 
[4]. In the next step, the weight value depending on the 
position of the particle is updated. Once the weight of 
each particle is determined, to prevent degeneracy 
occurrence, re-sampling method is carried out.  

2.2 Meshless Local Petrov-Galerkin (MLPG) 

MLPG is a weak form of meshless methods 
presented in 1998 by Atluri and Zhu (1998) to solve the 
potential equation. This method is generally used in fluid 
mechanics and involves two functions: a weight function 
(cubic spline) and moving kriging. 

2.3 Groundwater flow equation in the unconfined 
aquifer 

Based on the Dupouit assumption, the governed 
equation of groundwater flow in a transient condition is 
stated in Eq. 1 [5]: 
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Here, 𝐻𝐻 represents groundwater head [L], 𝑘𝑘 stands for 
hydraulic conductivity coefficient [L/T],  𝑄𝑄 denotes the 
discharge (+) or recharge (-) rate [L/T], and q stands for 
the distributed flow, e.g. precipitation and evaporation. 
𝑆𝑆𝑦𝑦 is specific yield. 

3. Results and Discussion 

Solving groundwater partial differential equation 
requires precise values of constant head boundaries. 
Therefore, determining the exact values of these 
boundaries is one of the fundamental steps in 
groundwater studies. Particle filter method is linked to 
the MLPG flow model that is calibrated and verified by 
the authors in the previous studies [6].  

     Finally, the optimal values of constant head 
boundaries are obtained, and, the groundwater table is 
computed using the achieved optimal values. Figure 1. 
shows the results of PF-MLPG, MLPG, FDM and 
observation data. In figure 1, the graphs show the high 
correspondence of PF-MLPG method (yellow line) to the 
observation data (black line). This fact clearly indicates 
the high accuracy of PF-MLPG method due to the usage 
of optimal values for constant head boundaries.     
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Figure 1. Comparison of results in different methods 
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where ℎ𝑜𝑜𝑜𝑜𝑡𝑡 ,  ℎ𝑠𝑠𝑜𝑜𝑡𝑡 , ℎ𝑜𝑜̅̅ ̅ are the level of observed groundwater 
and the simulated and mean of the observed values, 
respectively, n and m are the number of piezometers and 
the number of time steps. Table 1 shows the achieved 
results. 

Table 1. Calculation of errors 

 
PF-MLPG 

(1000 particles) 
(m) 

FDM(m) MLPG 
(m) 

Mean error (m) -0.061 0.159 -0.12 
Mean Absolute 

error (m) 0.298 1.434 0.573 

Root mean 
square error (m) 0.386 1.197 0.757 

RMSE is the main index for the evaluation of accuracy 
[9]. Based on Table 1, the results of PF-MLPG are more 
accurate than FDM and MLPG methods due to its lower 
value of RMSE. Also, the performance of PF-MLPG 
method with the different numbers of particles is 
investigated in Table 2. RMSE value decreases while the 
number of particles increases. The model also runs for 
2000 particles. However, its results are as the same of 
1000 particles.  

Table 2. Calculation of errors 

 PF-MLPG (500 
particles) (m) 

PF-MLPG (700 
particles) (m) 

Mean error (m) -0.101 -0.083 
Mean Absolute 

error (m) 0.416 0.332 

Root mean square 
error (m) 0.484 0.401 

4. Conclusions 

Particle filter, known as one of the data 
assimilation methods, is linked to the meshless local 
Petrov-Galerkin flow model to find the best values of 
constant head boundaries of a real aquifer. In the first 
step, a set of particles with the same weight values (1𝑁𝑁) are 
generated in the state space. The dimension of state space 
are equal to the number of uncertain parameters. The 
studied region is Birjand unconfined aquifer which is 
located in South-Khorasan province. Finally, the optimal 
values of constant head boundaries for boundary nodes 
are obtained. Mean, mean absolute and root mean square 
error indices are calculated for PF-MLPG, MLPG and 
FDM methods. The RMS errors are 0.386, 0.757 and 
1.197m for PF-MLPG, MLPG and FDM, respectively. 
The results also reveal that the RMS error decreases with 
increasing the number of particles. 
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4- Conclusions
Particle filter, known as one of the data assimilation 

methods, is linked to the meshless local Petrov-Galerkin 
flow model to find the best values of constant head 
boundaries of a real aquifer. In the first step, a set of 
particles with the same weight values (1/N) are generated 
in the state space. The dimension of state space are equal 
to the number of uncertain parameters. The studied region 
is Birjand unconfined aquifer which is located in South-
Khorasan province. Finally, the optimal values of constant 
head boundaries for boundary nodes are obtained. Mean, 
mean absolute and root mean square error indices are 
calculated for PF-MLPG, MLPG and FDM methods. The 
RMS errors are 0.386, 0.757 and 1.197m for PF-MLPG, 
MLPG and FDM, respectively. The results also reveal that 
the RMS error decreases with increasing the number of 
particles.
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