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ABSTRACT: In the phase of the design of a TBM, it is essential to optimize the cutter head characteristics 
concerning cut and cutter geometry parameters to maximize both cutter penetration and TBM advance 
rate. In this regard, valuable results have been achieved from numerical simulations and laboratory tests, 
however, due to the presence of some shortcomings for such methods (e.g. high difference between 
rolling force measured in the laboratory and actual field data), there is a high demand by the industry to 
conduct actual field data analyses. So far, very few efforts have been made to study the optimum cutter 
performance (e.g. penetration, normal force, and rolling force) based on the information of completed 
tunnel projects from around the world. To investigate the influence of various parameters on the cutter 
penetration and to provide basic guidelines for the evaluation of the optimum TBM performance in hard 
rock conditions, an extensive field database is compiled. Based on the data analysis of this database, it 
is found that the linear speed of the cutters has a direct correlation with two major parameters of normal 
force index (NFI) and rolling force index (RFI). In this regard, two formulas are generated using statistical 
analysis of the data from around 260 tunnel projects to evaluate both NFI and RFI. The corresponding 
formulas have a coefficient of determination of 77 and 68%, respectively. These formulas are used 
in an optimization process to maximize cutter penetration using the interaction of various operational 
constraints (cutter load capacity, cutter head torque limit, cutter geometry constrains, and cutter head 
penetration rate limits). The produced interaction diagram is called the force-penetration interaction 
diagram. The new findings of this study can provide a foundation to improve the design process of hard 
rock TBMs and to optimize their performance considering various project setting parameters. 
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1- Introduction
TBM performance optimization has been the subject of 

many research studies and field test trials. In this regard, 
some major TBM cutter head design characteristics 
including cut spacing and specific energy are studied in the 
laboratory using linear cutting machine tests, rotary cutting 
machine tests, and numerical simulations. The summary of 
the results of these studies shows that to reach an optimum 
excavation, the ratio of cutter spacing to penetration (S/p) 
shall be varied to reach minimum specific energy (SE). At 
this SE, the rolling force required to generate a unit volume 
of the excavated rock is comparably lower. One note is that 
in practice, rolling force is much lower than the normal force, 
hence it is not a major concern in performance optimization 
as long as its value falls within its permissible limit defined 
by the maximum cutter head torque.  In this paper, an 
extensive database compiled by the author during the past 
10 years is used to investigate the parameters maximizing 
the field TBM penetration and advance rate. In this regard, 

two new formulas are derived from the actual field data of 
many projects to evaluate cutter normal force and rolling 
force. These new formulas are used to optimize the cutter 
penetration considering TBM operational constraints.

2- Methodology
To improve the strategies for the evaluation of the 

normal force and rolling force, an attempt is made to use the 
information of the database to generate practical formulas for 
the normal force and rolling force using regression analysis. 
To improve the prediction performance, the objective 
parameters are normalized with the cutter penetration. With 
this strategy, the normal force is transformed to a parameter 
called, normal force index (NFI) (Eq. (1)), and the rolling 
force is transformed to a parameter called, rolling force 
index (RFI) (Eq. (2)).
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4. Conclusion 
This study provides an extensive data analysis for the 

optimization of hard rock TBMs’ performance using a 
compiled database of various information of many 
projects from around the world. To enhance the 
prediction of cutter forces (i.e. normal force and rolling 
force), two new formulas are developed using the cut and 
cutter geometry information (i.e., cutter penetration, 
cutter spacing, cutter diameter, tip width, etc.) and 
uniaxial compressive strength to evaluate the NFI and 
RFI. An interesting outcome of the analyses conducted 
for NFI and RFI is that both of these parameters are a 
function of the linear speed of the cutters.  

Based on empirical formulas obtained for NFI and 
RFI, a procedure is offered to optimize the TBM 
operation to obtain maximum TBM penetration and 
maximum TBM advance rate considering the effect of 
RPM and the operational limits for cutter load capacity, 
rolling force limit, and cutter geometry constrains. The 
outcomes of this procedure can be used to define 
optimum RPM, penetration, and intervention interval 
length, maximize the TBM advance rate and minimize 
the TBM downtimes. 
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Where NFI is normal force index in kN/mm/rev, Fn is 
cutter normal force in kN, p is cutter penetration in mm, 
RFI is rolling force index in kN/mm, and Fr is cutter rolling 
force in mm.

3- Results and Discussion
Eqs. (3) and (4) show the Minitab outputs for the best-

fitted model for the evaluation of NFI and RFI based on 
different step forward regression analyses. It should be 
noted that a p-value of less than 0.05 represents the high 
significance of a parameter in a multiple regression analysis. 
VIF (variance inflation factor) of less than 10 guarantees 
low collinearity between dependent parameters.
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Where UCS is uniaxial compressive strength in MPa,
S is cutter spacing in mm, LS is the average linear speed 

of the cutters in m/min, T is cutter tip width in mm, and d is 
cutter diameter in mm.
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noted that a p-value of less than 0.05 represents the high 
significance of a parameter in a multiple regression 
analysis. VIF (variance inflation factor) of less than 10 
guarantees low collinearity between dependent 
parameters. 

(3)  
(4)  

 
Where UCS is uniaxial compressive strength in MPa, 

S is cutter spacing in mm, LS is the average linear speed 
of the cutters in m/min, T is cutter tip width in mm, and 
d is cutter diameter in mm. 

The cutter force-penetration interaction diagram is 
constructed on a chart with p on the x-axis and Fn on the 
y axis. In this chart, the upper boundary is defined by the 
maximum cutter load capacity, the farthest right-hand 
side boundary is determined by the cutter geometry limit, 
and the upper right-hand boundary is defined according 
to Eqs. (3) and (4). As seen in Fig. 1, the extent and 
location of the upper right-hand boundary are dependent 
on the level of RPM used. As the RPM becomes higher, 
the extent of this boundary becomes larger. 
 

 
Fig. 1. Relationship among normal force, penetration, 

torque, and RPM. 
 

4. Conclusion 
This study provides an extensive data analysis for the 

optimization of hard rock TBMs’ performance using a 
compiled database of various information of many 
projects from around the world. To enhance the 
prediction of cutter forces (i.e. normal force and rolling 
force), two new formulas are developed using the cut and 
cutter geometry information (i.e., cutter penetration, 
cutter spacing, cutter diameter, tip width, etc.) and 
uniaxial compressive strength to evaluate the NFI and 
RFI. An interesting outcome of the analyses conducted 
for NFI and RFI is that both of these parameters are a 
function of the linear speed of the cutters.  

Based on empirical formulas obtained for NFI and 
RFI, a procedure is offered to optimize the TBM 
operation to obtain maximum TBM penetration and 
maximum TBM advance rate considering the effect of 
RPM and the operational limits for cutter load capacity, 
rolling force limit, and cutter geometry constrains. The 
outcomes of this procedure can be used to define 
optimum RPM, penetration, and intervention interval 
length, maximize the TBM advance rate and minimize 
the TBM downtimes. 
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Fig. 1. Relationship among normal force, penetration, torque, and 
RPM.
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