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ABSTRACT: Travel time prediction as an essential issue has been scrutinized in recent decades. To 
this end, various techniques are applied to estimate travel duration in dynamic networks and intelligent 
transportation systems. Accordingly, in this investigation, the prediction of travel time is considered by 
machine learning techniques. Initially, the experimental test is planned, and the travel time effective 
parameters are spotted. Subsequently, with the assistance of the floating car method, and My-tracks 
application, the data are collected in six elected roads. After data preparation, stop delay, grades, and 
the number of the lane are determined as the most effective travel time criteria. In this study, a novel 
machine learning technique based on the coyote optimization algorithm is introduced, and its precision 
is compared with five conventional regression models. Drawing on results, the accuracy of the coyote 
optimization algorithm-based machine learning technique is more than that of other prediction methods. 
The coefficient of determination of the introduced machine learning technique for training and testing 
data is equal to 0.746 and 0.724, respectively. Furthermore, coyote optimization algorithm-based 
machine learning estimates 73% of testing data with an error of fewer than 20 seconds. .
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1- Introduction
Travel time prediction is one of the essential parts of 

informing drivers. This system helps travelers to select an 
appropriate path, which leads to traveling duration reduction 
[1]. Accordingly, various machine learning techniques, 
including regressions, decision trees, artificial neural 
networks, time series, have been applied to estimate the 
travel time duration and to reduce the traffic in the pavement 
networks.

Sil et al. [2] stated that geometric characteristics of roads 
and the number of lanes significantly impact the vehicle’s 
speed, and accordingly, they have to be considered in 
travel time prediction [2]. Vilarinho et al. [3] analyzed the 
influences of traffic lights on travel duration, and the results 
indicated that stop delay is a vital criterion in order to 
evaluate the travel time.

As can be seen from the above references, the novel machine 
learning techniques have not received enough attention in 
this field. Regarding the literature, essential parameters may 
not be considered in a model simultaneously—accordingly; 
a new machine learning method was introduced in this 
study. Moreover, various parameters are scrutinized, and the 
most important criteria are taken into consideration in the 
prediction model.

2- Methodology
2- 1- Data collection

The data were collected based on the floating car method, 
and this method is applied according to the procedure 
presented in NCHRP Handbook [4]. In this regard, Mytacks 
application is utilized so as to collecting data and saving them. 
The case study comprises nine sections, and each section is 
approximately 1 km. 

2- 2- Parameter selection
Initially, stop delay, the number of lanes, availability of 

adjacent parking, grade, the number of speed bumps are taken 
into consideration as effective parameters. The enter method 
is used to analyze these parameters. The results show that stop 
delay, grade, and the number of lanes are the most critical 
parameters, and accordingly, they are applied to generate 
prediction models.

2- 3- Modeling 
The coyote optimization algorithm-based machine 

learning algorithm (COA) is introduced in this investigation. 
That is to say, by virtue of the coyote optimization algorithm, 
a novel machine learning technique is developed. To this 
end, the coyote optimization algorithm is adjusted to solve 
integer programming. Afterward, the mean absolute error 
is set the objective function of the optimization algorithm. *Corresponding author’s email: agolroo@aut.ac.ir
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Eight thousand various modes are considered for each 
input. Consequently, the model is run ten times, the formula 
containing the lowest mean absolute error is considered the 
prediction model.

The introduced model is compared with five conventional 
regression models, including linear regression, fractional 
regression, exponential regression (ER), 2nd polynomial 
regression (2R), and 3rd polynomial regression (3R).  Mean 
absolute error (MAE), root mean square error (RMSE), 
mean absolute percentage error (MAPE), coefficient of 
determination, and the percentage of data which their error 
is fewer than 20 seconds (E20s) are applied to compare the 
introduced model (COA) with five conventional regression 
models. The equation travel time prediction presented by 
COA, LR, ER, 2R, 3R, and FR is indicated in Eq. (1) to (6). 

 Results and discussions
Figure 1 displays the coefficient of determination related 

to the prediction models. Figures 2 and 3 illustrate the MAE 
and MAPE of estimation algorithms, respectively. The RMSE 
and E20s results are indicated in Figures 4 and 5 in the order 
mentioned.

3- Conclusions
As can be seen, the accuracy of COA is considerably better 

than that of other models for both testing and training data. 
Moreover, the introduced model is highly qualified to estimate 
travel time with high accuracy.

Fig. 1.The coefficient of determination

Fig. 2. The mean absolute error

Fig. 3. The mean absolute percentage error
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3. Results and discussions 
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related to the prediction models. Figures 2 and 3 
illustrate the MAE and MAPE of estimation algorithms, 
respectively. The RMSE and E20s results are indicated 
in Figures 4 and 5 in the order mentioned. 

 

 

Figure 1: The coefficient of determination 

 

Figure 2: The mean absolute error 

 

Figure 3: The mean absolute percentage error 

 

Figure 4: The root mean square error  

 

Figure 5: The percentage of data which their error is 
fewer than 20 seconds  

4. Conclusions 

     As can be seen, the accuracy of COA is considerably 
better than that of other models for both testing and 
training data. Moreover, the introduced model is highly 
qualified to estimate travel time with high accuracy. 
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