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ABSTRACT: According to reports from past earthquakes around the world, the phenomenon 
of liquefaction is one of the main hazards of earthquakes that causes damage to structures and 
infrastructures. The risk of liquefaction and associated lateral spreading can be reduced by various 
ground improvement techniques, including densification, solidification (e.g., cementation), Vibro-
compaction, drainage, explosive compaction, deep soil mixing, deep dynamic compaction, permeation 
grouting, jet grouting, pile-pinning, and gravel drains or SCs. In this research, the effects of pile groups 
on reducing the potential for liquefaction during earthquakes are investigated parametrically, using 
three-dimensional finite element (FE) simulations via OpenSees. Saturated uniform and stratified loose 
sand are subjected to two realistic destructive events with different characteristics. A multi-yield-surface 
plasticity model, Drucker–Prager yield criterion, is considered for the dynamic analysis conducted in 
this study based on constitutive laws applicable to all types of soils. The objective of this research is to 
assess the effectiveness of the pile group based on several different factors, including area replacement 
ratio (A_rr), piles diameter, number of piles, thickness and position of liquefiable soil, and earthquake 
characteristics. This parametric study evaluates the effect of each of these factors on soil acceleration, 
lateral displacement, and excess pore pressure. The results showed that the lateral displacement and 
excess pore pressure decrease, as the area replacement ratio, number, and diameter of the pile increase. 
Besides, the responses of the saturated stratified sand strata are not only dependent on the thickness 
of the liquefiable layer but are also highly influenced by its position. The presence of a liquefiable 
layer at lower depths, although acting as an isolate relative to the acceleration, can increase lateral 
displacements. Also, according to the results, there is an appropriate correlation between the variations 
of lateral displacement rate of piles and soil and earthquake parameters including Arias intensity, the 
time corresponding to the PGA, and the number of significant excitation cycles. Therefore, the results of 
this study may be applicable for other earthquakes.
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1. INTRODUCTION
The lateral spreading of mildly sloping ground and 

the liquefaction induced by earthquakes can cause major 
destruction to foundations and buildings, mainly as a result 
of excess pore water pressure generation and softening of 
the subsoil [1]. One of the effective methods to reducing the 
risk of liquefaction and associated ground deformation in 
saturated sands is the pile-pinning technique. The soil near 
the pile pinning tends to respond as undrained, and a larger 
lateral resistance is mobilized due to the dilative response 
of liquefied soil. Many attempts have been made in recent 
decades to study the behavior of a pile in liquefied soil, 
using various experimental techniques including dynamic 
centrifuge  experiments, shaking Table tests, and full-scale 
field tests as well as various numerical modeling  methods 
[1-3]. This study focuses on the effects of pile-pinning on 
the seismic response of saturated soil based on numerical 

simulation. Additional simulations considering a wider 
range of values for the area replacement ratio, pile diameter, 
liquefiable layer thickness, situation of very loose sand, and 
input motion parameters were conducted to fully characterize 
the seismic response of saturated uniform and stratified sand 
deposits in the presence of piles and compared together. 

2. NUMERICAL SIMULATIONS
Generally, 72 numerical simulations have been performed 

using the open-source computational platform OpenSees 
[4] to gain insight into the seismic performance of the pile-
pinning in 10-m-thick mildly inclined (4°) saturated uniform 
and stratified sand soil above the bedrock (Fig. 1).

 The physical and mechanical properties of the soil 
layers and the pile are presented in Table 1. To examine 
characteristics of motions effects, different models have been 
subjected to the El Centro (1940) and Loma Prieta (1989) 
earthquakes (shown in Fig. 2) with 0.25 g scaled peak ground 
accelerations.
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The effects of various   (  and  are pile 
diameter and spacing between the pile centers, respectively) 
[1, 3] values on lateral displacement are considered. In 
addition, diameter effects are investigated several piles 
pinning configurations (1 1× , 2 2× , and 4 4× ). For more 
detail, refer to Ref [5]. Besides, In the case of remediation of 
stratified medium sand, two dimensionless parameters have 
been defined to investigate the effect of the very loose layer 
thickness and its position on the lateral deformation as follow:

,lr l sr sH H H H H H= =  (1)

Where H  is the height of soil medium, 
sH  is the distance 

from the ground surface to the very loose sand layer, and 
lH  

is the thickness of the liquefiable very loose layer (See Fig. 
1).

As mentioned, all of the simulations conducted were 
developed and executed using the open-source computational 
platform OpenSees [4] based on u-p formulation. In 3D, the 
soil domain is represented by 8-20 node, fully coupled (solid-
fluid) brick elements. The multi-yield-surface plasticity [6] 
model was chosen for the analysis conducted in this study. 
The analysis framework and its assumptions, boundary 
conditions, and constitutive law for saturated soil response 
were considered according to the Refs [7].

3. RESULTS AND DISCUSSION
To investigate the effect of the number of piles on the 

generation and dissipation of pore water pressure, the time 
history of excess pore water pressure in surrounding piles 
1×1 - 2×2 - 4×4 for depths of 2 and 8 m is shown in Fig. 
3. According to Fig. 3, as the number of piles increases, the 
maximum EPP decreases and disappears sooner, which is due 
to the increase in system stiffness and the increasing effect 
of the dilatancy phenomenon. In other words, increasing 
the stiffness of the system reduces the displacement (not 
shown here) of the surrounding soil, thereby reducing the 
incremental process of excess pore water pressure. Also, the 
result is shown that with increasing lrH and srH , the lateral 
displacement of the pile head increases.

4. CONCLUSION
In this paper, the behavior of the pile group with different 

configurations of 1×1 - 2×2 - 4×4 in two cases (uniform 
saturated sand strata/stratified saturated sand layer) has been 
evaluated under two earthquake records. The main important 
conclusions drawn from the present study are as follows: 
Generally, the lateral displacements were amplified as the 

 
Fig. 1. 3D view of soil mesh and pile pinning, Right side: Uniform saturated sand, Left side: Stratified saturated sandy soil 
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Fig. 2. Horizontal acceleration history for the El Centro (1940) and Loma Prieta (1989) with scaled PGA of 0.25 g, of the 

input events 
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Fig. 2. Horizontal acceleration history for the El Centro (1940) 
and Loma Prieta (1989) with scaled PGA of 0.25 g, of the input 

events
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1. Introduction 
The lateral spreading of mildly sloping ground and the 

liquefaction induced by earthquakes can cause major 
destruction to foundations and buildings, mainly as a 
result of excess pore water pressure generation and 
softening of the subsoil [1]. One of the effective methods 
to reducing the risk of liquefaction and associated ground 
deformation in saturated sands is the pile-pinning 
technique. The soil near the pile pinning tends to respond 
as undrained, and a larger lateral resistance is mobilized 
due to the dilative response of liquefied soil. Many 
attempts have been made in recent decades to study the 
behavior of a pile in liquefied soil, using various 
experimental techniques including dynamic centrifuge  
experiments, shaking table tests, and full-scale field tests 
as well as various numerical modeling  methods [1-3]. 
This study focuses on the effects of pile-pinning on the 
seismic response of saturated soil based on numerical 
simulation. Additional simulations considering a wider 
range of values for the area replacement ratio, pile 
diameter, liquefiable layer thickness, situation of very 
loose sand, and input motion parameters were conducted 
to fully characterize the seismic response of saturated 
uniform and stratified sand deposits in the presence of 
piles and compared together.  

 
2. Numerical Simulations 

Generally, 72 numerical simulations have been 
performed using the open-source computational platform 
OpenSees [4] to gain insight into the seismic 
performance of the pile-pinning in 10-m-thick mildly 
inclined (4°) saturated uniform and stratified sand soil 
above the bedrock (Fig. 1). 

 

  
Fig. 1. 3D view of soil mesh and pile pinning, Right side: 
Uniform saturated sand, Left side: Stratified saturated 

sandy soil. 
 

The physical and mechanical properties of the soil 
layers and the pile are presented in Table 1. To examine 
characteristics of motions effects, different models have 
been subjected to the El Centro (1940) and Loma Prieta 
(1989) earthquakes (shown in Fig. 2) with 0.25 g scaled 
peak ground accelerations. 

Table 1. Soil and pile model parameters. 
Very 
Loose  Medium  Soil Parameters 

1700 
𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  2000 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  Mass density,𝜌𝜌 

10−5𝑚𝑚 𝑠𝑠⁄  6.6 × 10−6𝑚𝑚 𝑠𝑠⁄  Permeability coefficient, 
𝑘𝑘 

55 MPa 100 MPa Shear modulus, 𝐺𝐺 
150 MPa 300 MPa Bulk modulus, 𝐵𝐵 

29° 35° Friction angle,  
𝜑𝜑 

29° 26.5° 
Phase transformation 

(PT) angle, 
𝜑𝜑𝑃𝑃𝑃𝑃 

0.35 0.21 Contraction parameter, 
𝑐𝑐1 

0 0.6 Dilation parameter, 𝑑𝑑 
0 0.3 Dilation parameter, 𝑑𝑑2 

Pile Parameters 

2400 𝑘𝑘𝑘𝑘 𝑚𝑚3⁄  Mass density 
20000 MPa Elastic modulus 

0.3 Poisson's ratio  
 

 

 
Fig. 2. Horizontal acceleration history for the El Centro 

(1940) and Loma Prieta (1989) with scaled PGA of 0.25 g, 
of the input events. 

 
The effects of various 𝐴𝐴𝑟𝑟𝑟𝑟 = 𝜋𝜋𝐷𝐷2 4𝑆𝑆2⁄   (𝐷𝐷 and 𝑆𝑆 are 

pile diameter and spacing between the pile centers, 
respectively) [1, 3] values on lateral displacement are 
considered. In addition, diameter effects are investigated 
several piles pinning configurations (1 1 , 2 2 , and 
4 4 ). For more detail, refer to Ref [5]. Besides, In the 
case of remediation of stratified medium sand, two 
dimensionless parameters have been defined to 
investigate the effect of the very loose layer thickness and 
its position on the lateral deformation as follow: 

(1) ,lr l sr sH H H H H H= =  
Where H  is the height of soil medium, sH  is the 

distance from the ground surface to the very loose sand 
layer, and lH  is the thickness of the liquefiable very loose 
layer (See Fig. 1). 

As mentioned, all of the simulations conducted were 
developed and executed using the open-source 
computational platform OpenSees [4] based on u-p 
formulation. In 3D, the soil domain is represented by 8-
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Arias intensity in an event increased. The variations of lateral 
displacement rate are related to rates of Arias intensity (not 
shown). The maximum excess pore pressure ratio has been 
observed in the very loose sandy soils, due to the contractile 
behavior of this type of sand. In stratified saturated sand 
soils, when a very loose layer with a constant thickness is 
placed at the deeper depth, excess pore water pressure in the 
upper layers of the soil decreases (not shown). However, in 
contrast to excess pore water pressure, the displacement of 
the pile head increases due to the increase in the lateral force 
of the liquefied soil at a lower depth, which in turn leads to 

an increase in rotation at the same height from the pile and 
eventually increases horizontal displacement. Therefore, 
it can be mentioned that in the designs, it is not possible 
to make a decision alone based on only one of the outputs 
(e.g., displacement, excess pore water pressure in the soil, or 
bending moment of the along pile).
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Fig. 3. Time history of excess pore water pressure in surrounding piles 1×1 - 2×2 - 4×4 for different depths 
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Fig. 3. Time history of excess pore water pressure in surrounding 
piles 1×1 - 2×2 - 4×4 for different depths
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