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ABSTRACT:  For most rock materials, there exists a coupling between inelastic deformations caused 
by crack displacements on micro-crack faces and damage evolution due to nucleation and growth 
of wing- and secondary cracks. While rock material is subjected to dynamic loading, the interaction 
between micro-cracks plays an important role in materials behavior. The self-consistent homogenization 
scheme is implemented in this paper to consider micro-cracks interaction and determine the equivalent 
mechanical properties of micro-cracked rock deteriorated by damage evolution. This article aims to 
develop a self-consistent based micromechanical damage model by taking into account the wing- and 
secondary-cracking mechanisms accompanied by inelastic strains caused by crack displacements under 
dynamic compressive loading. While stress intensity factors in tensile and in-plane shear modes at 
flaw tips exceed the material fracture toughness in modes I and II, respectively, wing- and secondary 
cracks are sprouted and damage evolution occurs. For closed cracks, an appropriate criterion for the 
secondary-crack initiation is proposed in this paper. The developed model algorithm is programmed 
in the commercial finite difference software environment for numerical simulation of rock material to 
investigate the relationship between the macroscopic mechanical behavior and the microstructure. The 
fracture toughness parameters of the rock samples are experimentally determined. The rock microstructure 
parameters (average initial length and density of flaws) are studied using scanning electron microscopy. 
To verify the developed model, a series of numerical simulations are carried out to numerically reproduce 
the Split-Hopkinson pressure bar test results. The simulation results demonstrate that the developed 
micromechanical model can adequately reproduce many features of the rock behavior such as softening 
in the post-peak region, damage induced by wing- and secondary cracks, and irreversible deformations 
caused by crack displacements on micro-cracks.  Furthermore, the softening behavior of rock material 
in the post-peak region is affected by considering inelasticity and the secondary cracking mechanisms. 
Therefore, the rock sample simulation with the coupled inelastic-damage model can increase inelastic 
deformations in the post-peak region as a result of irreversible strains caused by crack displacements on 
micro-cracks. The simulation by considering the secondary-crack mechanism leads to an increase in the 
micro-cracking process, damage, and fragmentation in rock material.
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1. INTRODUCTION
Under dynamic compressive stress fields, inelastic 

deformations are high compared to quasi-static compressive 
fields. Thus, various mechanisms have been suggested in 
the literature for high inelastic deformations under dynamic 
loading conditions. In this paper, inelastic deformations caused 
by relative displacements along initial micro-cracks and 
wing- and secondary-cracking mechanisms are incorporated 
into a homogenized constitutive formulation based on the 
self-consistent scheme. Researchers such as Xie et al. [1] 
and Molladavoodi [2] used the Ponte-Castaneda and Willis 
or Mori-Tanaka homogenization schemes to study materials 
behavior with closed frictional micro-cracks. In another 
study, Paliwal and Ramesh [3] established a micromechanical 

damage model based on the self-consistent homogenization 
scheme accounting for two-dimensional slit-like micro-
cracks embedded in an elliptical inclusion surrounded by a 
homogenized solid matrix. Ayyagari et al. [4] proposed a fully 
three-dimensional generalized anisotropic compliance tensor 
for brittle solids and evaluated considering the wing-cracking 
mechanism, using a mixed-approach based on kinematic and 
energetic arguments.

This study aims to develop a micro-mechanical damage 
model to take into account damage due to both wing- and 
secondary-cracking mechanisms under dynamic compressive 
loading. Moreover, in this paper, the model is extended to 
include the coupling of two dissipative mechanisms, i.e. 
damage evolution and inelasticity induced by relative crack 
displacements for the case of closed micro-cracks. The 
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proposed coupling between inelasticity and damage evolution 
is formulated in the framework of a micromechanical model 
based on the self-consistent homogenization scheme, which 
is programmed and implemented into a commercial code. 
Accordingly, the proposed model is applied for the simulation 
of brittle rocks behavior under dynamic loading.

2. DESCRIPTION OF THE THEORETICAL 
FRAMEWORK

According to Ayyagari et al. [4], it is assumed that sliding 
on flaws takes place along the long diameter of the pre-
existing micro-crack named as the P  direction. The direction 
Q  is transverse to the flaw plane in 3D, as illustrated in Fig. 
1. In this paper, the pre-existing micro-crack geometry is 
presumed to be a planner elliptic with a long diameter of 2S 
and a normal orientation N .

( ), , P N Q  represent the local flaw basis defined 
concerning the global coordinate system ( 1 2 3, , e e e ) using 
their direction angles. The normal orientation ( N ) of the 
pre-existing micro-crack, the sliding direction ( P ) and the 
wing-crack normal orientation ( wN ) can be defined in 3D 
space by two angles ϕ  and θ, as illustrated in Fig. 1. The 
crack normal ( N ), the sliding direction ( P ) and the wing-
crack normal ( wN ) are determined in the global coordinate 
system as follows [8]:
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The inclusion stress ( eσ  ) is the stress state applied to 
the elliptical inclusion embedded in an elastic matrix. The 

inclusion stress traction on the crack plane is ( . eT Nσ=
). The inclusion stress traction can be decomposed into 
the crack normal ( .nn N Tσ = ) and the sliding ( .T P ) 
components, controlling cracking mechanisms. The sliding (

.T P ) component is the driving force for sliding along pre-
existing micro-cracks and wedging (gapping) for nucleation 
of wing cracks. The crack normal ( .nn N Tσ = ) component 
indicates whether the pre-existing crack grows under opening 
(tensile) ( 0nnσ > ) or closed (shear) ( 0nnσ < ) modes. The 
damage in rock material is due to the wing- and secondary-
cracking mechanisms. Therefore, the damage parameter (Ω ) 
can be divided into wing-crack damage ( wΩ ) and secondary-
crack damage ( sΩ ) as follows:
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(shear) (𝜎𝜎𝑛𝑛𝑛𝑛 < 0) modes. The damage in rock material is 
due to the wing- and secondary-cracking mechanisms. 
Therefore, the damage parameter (𝛺𝛺) can be divided into 
wing-crack damage (𝛺𝛺𝑤𝑤) and secondary-crack damage 
(𝛺𝛺𝑠𝑠) as follows: 
Ω =Ωw +Ωs (2) 

The inelastic strain by considering both wing- and 
secondary-cracking mechanisms can be written as 
follows: 
𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜂𝜂𝜂𝜂 [𝜛𝜛1𝑢𝑢𝑝𝑝(𝑁𝑁⨂𝑠𝑠𝑃𝑃) +𝜛𝜛2𝑢𝑢𝑝𝑝(𝑁𝑁𝑤𝑤⨂𝑠𝑠𝑃𝑃)

+𝜛𝜛3 (𝑁𝑁𝑤𝑤⨂𝑠𝑠 (𝜎𝜎𝑒𝑒.𝑁𝑁𝑤𝑤))

+𝜛𝜛4∆𝑠𝑠⁡(𝑁𝑁⨂𝑠𝑠𝑃𝑃)] 

(3) 

Where, 𝜛𝜛1, 𝜛𝜛2,  𝜛𝜛3 and 𝜛𝜛4  are the coefficients to 
consider the inelastic strain on a three-dimensional scale. 
∆𝑆𝑆, is the increment in the pre-existing micro-crack 
length due to the secondary-cracking mechanism. 

� (2)

The inelastic strain by considering both wing- and 
secondary-cracking mechanisms can be written as follows:
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Where 1,  ϖ , 2ϖ ,  3ϖ  and 4ϖ   are the coefficients to 
consider the inelastic strain on a three-dimensional scale.
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is the increment in the pre-existing micro-crack length due to 
the secondary-cracking mechanism.

3. EXPERIMENTAL STUDIES FOR ROCK 
PARAMETERS DETERMINATION

The studied rock is taken from the Sungun mine located in 
Azerbaijan Province, Northwest Iran. The Sungun mine is an 
open-pit mine exploiting the Sungun copper porphyry deposit 
that is an intrusive porphyritic igneous rock. The Sungun 
Porphyry (SP) is the host rock of the copper mineralization 
forming the main lithological unit at the Sungun mine. 
The mechanical, micromechanical, and fracture toughness 
parameters of the SP are listed in Table 1.
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Table 1. The mechanical, micromechanical, and fracture 

toughness parameters of the SP. 
Rock properties Value 
𝜎𝜎𝑐𝑐⁡(MPa) 37 
𝐸𝐸⁡(GPa) 9.5 
𝑣𝑣 0.23 
𝐾𝐾𝐼𝐼𝐼𝐼(MPa√m) 0.77 
𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼(MPa√m) 1.4 
2𝑠𝑠0 (μm) 96.5 

𝜂𝜂 ( 1
m2) 5.46e8 

 
4. Numerical simulation results 

The main objective of the developed 
micromechanical damage model is to reproduce and 
predict the brittle rock behavior under dynamic 
compressive loading. The inelasticity caused by relative 
crack displacements, damage evolution, and the 
sensitivity of the compressive peak strength to the 
applied strain rate are some key features of rock brittle 
behavior, which are of great interest under dynamic 
compressive loading. The numerical model with the 
width and height of 25 mm is discretized with (30*30) 
elements. To verify the developed micromechanical 
damage model, the simulated stress-strain curves for the 
SP are plotted against and compared with the 
experimental stress-strain curves of the SHPB test in Fig. 
2 under the same imposed strain rates.  

 

 
Fig. 2. The comparison between the numerical and 

experimental results. 
 

5. Conclusion 
In this work, a micromechanical damage model was 

developed to take into account the coupling between 
inelasticity and the damage process under dynamic 
compressive loading conditions. A major feature of the 
developed model is that the secondary-cracking 

mechanism, in addition to the wing-cracking mechanism 
is considered in the micromechanical model. Moreover, 
the shear mode criterion and the evolution rule for 
secondary-cracking based on the physical facts at the 
micromechanical scale were proposed in the classic 
fracture mechanics framework to take into account the 
secondary-cracking mechanism. Variation of the applied 
strain rate significantly affected the mechanical response 
of the brittle materials. Furthermore, the axial inelastic 
strain increment and damage evolution in rock specimen 
were recorded during numerical simulation by the 
proposed inelastic- damage micromechanical model 
under dynamic uniaxial compressive loading conditions.  
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4. NUMERICAL SIMULATION RESULTS
The main objective of the developed micromechanical 

damage model is to reproduce and predict the brittle 
rock behavior under dynamic compressive loading. The 
inelasticity caused by relative crack displacements, damage 
evolution, and the sensitivity of the compressive peak 
strength to the applied strain rate are some key features of rock 
brittle behavior, which are of great interest under dynamic 
compressive loading. The numerical model with the width 
and height of 25 mm is discretized with (30*30) elements. 
To verify the developed micromechanical damage model, the 
simulated stress-strain curves for the SP are plotted against 
and compared with the experimental stress-strain curves of 
the SHPB test in Fig. 2 under the same imposed strain rates. 

5. CONCLUSION
In this work, a micromechanical damage model was 

developed to take into account the coupling between 
inelasticity and the damage process under dynamic 
compressive loading conditions. A major feature of the 
developed model is that the secondary-cracking mechanism, 
in addition to the wing-cracking mechanism is considered 
in the micromechanical model. Moreover, the shear mode 
criterion and the evolution rule for secondary-cracking 
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based on the physical facts at the micromechanical scale 
were proposed in the classic fracture mechanics framework 
to take into account the secondary-cracking mechanism. 
Variation of the applied strain rate significantly affected the 
mechanical response of the brittle materials. Furthermore, the 
axial inelastic strain increment and damage evolution in rock 
specimen were recorded during numerical simulation by the 
proposed inelastic- damage micromechanical model under 
dynamic uniaxial compressive loading conditions. 
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