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Effect of Foundation Flexibility on the Capacity of Concrete Moment Frames with 
Shear Wall  
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ABSTRACT: Considering the soil-foundation-structure interaction (SFSI) in the structural modeling 
procedure can change the seismic structural response. However, the SFSI effects are mostly ignored in 
the analysis procedure of structures, as a general engineering belief regarding its conservative effects. 
This conservation is not always the case, although the period and the damping of structures change by 
considering SFSI effects and consequently, the seismic demand decreases. The aim of this paper is to 
evaluate the influence of foundation flexibility on the capacity of concrete moment frames with the shear 
wall. For this purpose, the beam on nonlinear Winkler foundation approach is used, which is a simple and 
efficient method. First, a collection of 3, 6 and 10 storied reinforced concrete moment resisting frames 
founded on soft, medium and hard soils are designed based on FEMA450. After the implementation of 
frames in Opensees software, a set of seismic scenarios are selected. In the following, each frame that has 
been founded on the soft, medium and hard soil is analyzed for the case of fixed-base and the flexible-
base assumption by incremental dynamic analysis (IDA). A comparison is made between the results 
of each frame in the flexible-base and fixed-base conditions. The results show that the consideration 
of the SFSI effects can significantly influence the IDA curves and decrease the structural capacity of 
frames. So that dynamic instability will occur before the expected capacity corresponding to fixed-base 
assumptions has been achieved. This instability increases with increasing shear wave velocity of soils 
and height of frames. For example, 3 and 6 storied frames with the flexible base, which have been 
founded on soft soil, reach ultimate capacity in 52% and 45% of spectral acceleration corresponding to 
fixed base, respectively.
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1- Introduction
The characteristics of the structure change due to the SFSI 

effect in comparison with the fixed-base assumption because 
the ground motion input can be significantly modified in 
the case of soft soil. Moreover, the natural period of a given 
structure can extend and in turn, the level of seismic input 
would decrease [1].  

In fact, the SFSI effect is a combined phenomenon in 
which the structure is influenced by the dynamic behavior of 
the soil and the foundation and vice versa [2]. Despite the 
evidence in Structural and earthquake engineering literature, 
most structures are designed without considering the effect of 
SFSI because of incorrect belief that neglecting the SFSI is 
conservative. In recent years, the effects of vertical earthquake 
motion on high-rise RC frame structures are investigated [3] 
considering SFSI and fixed support condition. However, 
investigation of SFSI effects seems necessary. For this, the 
influence of the foundation flexibility on the capacity of 
concrete moment frames with shear wall is studied in the 
present paper. 

2- Methodology
2.1. Shear Wall Frames

A set of 2-D concrete moment resisting frames with shear 
walls containing 3, 6 and 10 story frames are designed based 
on FEMA450 [4] static linear guidelines on hard, medium 
and soft soil conditions introduced through site classes B, C 
and D (Figure 1). As shown in Figure 1, the story height and 
the bay length are 600 and 350 cm, respectively. The shear 
wall thickness is 25 cm for the 3 and 6 story frames and 
equals to 30 cm for the 10 story frames. The geometric and 
material properties of the designed frames are presented in 
Tables 1 and 2.

Implementation of frames is performed in the Opensees 
framework [5]. In this paper, the nonlinear beam element with 
concentrated hinges is employed for beam modeling. Beams 
with concentrated plastic hinges and columns of fiber section 
are employed to simulate the nonlinear flexural behavior of 
the moment frames. The beam With Hinges element is chosen 
for the beams. 
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In this study, the Beam on Nonlinear Winkler Foundation 
(BNWF), which is capable of simulating the uplift and rocking 
motions (geometrical nonlinearity) as well as the nonlinear 
behavior of the soil (material nonlinearity), is employed to 
model the soil-footing interface. For this, BNWF numerical 
model has been constructed by assigning nonlinear Beam-
Column and zero Length elements to the strip footing and 
the soil springs, respectively. In order to define the Winkler 
springs, first, their properties are determined according 
to different site classes and the corresponding footing 
dimensions. Second, Qzsimple1 material (in the Opensees) is 
chosen to represent the soil behavior based on the computed 
parameters. Moreover, the Gazetas concentrated stiffness 
has been employed to define the stiffness of the soil springs. 
Therefore, the distributed stiffness of the Winkler foundation 
was estimated based on the continuum approaches.

Fig. 1. The schematic elevation of the studied frames

Table 1. Geometric properties of the designed frames

Table 2. Material properties of the designed frames
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Table 1. Geometric properties of the designed frames 

Story 
No. Level 

Column 
Width 
(cm) 

Column 
Height 
(cm) 

Beam 
Width 
(cm) 

Beam 
Height 
(cm) 

3 1-2-3 45 45 45 45 
6 1-2-3-4-5-6 45 45 45 45 

10 
1-2-3 55 55 55 40 

4-5-6-7 45 45 45 40 
8-9-10 45 45 45 40 

Table 2. Material properties of the designed frames 
Concrete 

Compression 
Strength, 
(kg/cm2)  

Modulus 
of 

Elasticity, 
(kg/cm2) 

Yield 
Stress 

(kg/cm2) 

Shear 
Modulus 
(kg/cm2) 

250 2.388 e+5 4000 99500 

Columns are modeled by the fiber method with the 
capability of developing distributed plasticity along the 
element’s length. Then, the fiber sections are assigned to 
the nonlinear Beam Column elements. Each element was 
also divided into four sub-elements in a story level to 
provide more robustness. In order to simulate the shear 
wall element, Flexure-Shear Interaction Displacement-
Based Beam-Column element has been selected which 
developed in the Opensees platform based on the concept 
of formerly used Multiple Vertical-Line-Element Model 
(MVLEM). The definition of the boundary elements was 
also provided in the model.  

In this study, the Beam on Nonlinear Winkler 
Foundation (BNWF), which is capable of simulating the 
uplift and rocking motions (geometrical nonlinearity) as 
well as the nonlinear behavior of the soil (material 
nonlinearity), is employed to model the soil-footing 
interface. For this, BNWF numerical model has been 
constructed by assigning nonlinear Beam-Column and 
zero Length elements to the strip footing and the soil 
springs, respectively. In order to define the Winkler 
springs, first, their properties are determined according to 
different site classes and the corresponding footing 
dimensions. Second, Qzsimple1 material (in the 
Opensees) is chosen to represent the soil behavior based 
on the computed parameters. Moreover, the Gazetas 
concentrated stiffness has been employed to define the 
stiffness of the soil springs. Therefore, the distributed 
stiffness of the Winkler foundation was estimated based 
on the continuum approaches. 

2.2. Strong ground motions 
     Strong ground motion (SGM) selection can 
significantly modify the nonlinear response of structures. 
The procedure for record selection suggested by Ghafory 
Ashtiany et al. [8] has been employed in this paper which 
chooses a few strong ground motion records in order to 
get approximately the same result as a large set of 
records. Using the mentioned procedure can decrease the 
computational time significantly. In this study, the 
records selected are based on the natural period of each 
frame and are introduced in Tables 3 and 4. 
 

Table 3. The features of SGMs – Fixed base 
Story 
No. 

Period 
(s) SGM’s ID 

3 0.14 3-8-14-20-21-24-27-28 
6 0.44 2-4-10-12-20-21-23-30 
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The nonlinear behavior of the plastic hinges was defined 
in accordance with Haselton et al. [6], who proposed essential 
relationships in their study based on the calibration of 
numerous test results in the form of the tri-linear backbone 
curve suggested by Ibarra [7].
 Columns are modeled by the fiber method with the capability 
of developing distributed plasticity along the element’s 
length. Then, the fiber sections are assigned to the nonlinear 
Beam Column elements. Each element was also divided into 
four sub-elements in a story level to provide more robustness. 
In order to simulate the shear wall element, Flexure-Shear 
Interaction Displacement-Based Beam-Column element has 
been selected which developed in the Opensees platform 
based on the concept of formerly used Multiple Vertical-Line-
Element Model (MVLEM). The definition of the boundary 
elements was also provided in the model. 
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2.2. Strong Ground Motions
Strong ground motion (SGM) selection can significantly 

modify the nonlinear response of structures. The procedure 
for record selection suggested by Ghafory Ashtiany et al. [8] 
has been employed in this paper which chooses a few strong 
ground motion records in order to get approximately the 
same result as a large set of records. Using the mentioned 
procedure can decrease the computational time significantly. 
In this study, the records selected are based on the natural 
period of each frame and are introduced in Tables 3 and 4.

3- 3. Discussion and Results
Incremental dynamic analysis is performed for each frame 

which has been founded on the soft, medium and hard soil 
for the case of fixed-base and flexible-base assumption. The 
summarized IDA curves are shown in Figure 2 for each frame 
based on soil type. Results show that SFSI is beyond the 
increasing period of interaction systems. This phenomenon 
can significantly affect the capacity of frames. So that the 
endpoints of IDA curves which present the capacity of 
structures, decrease with considering SFSI. In other words, 
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uplift and rocking motions (geometrical nonlinearity) as 
well as the nonlinear behavior of the soil (material 
nonlinearity), is employed to model the soil-footing 
interface. For this, BNWF numerical model has been 
constructed by assigning nonlinear Beam-Column and 
zero Length elements to the strip footing and the soil 
springs, respectively. In order to define the Winkler 
springs, first, their properties are determined according to 
different site classes and the corresponding footing 
dimensions. Second, Qzsimple1 material (in the 
Opensees) is chosen to represent the soil behavior based 
on the computed parameters. Moreover, the Gazetas 
concentrated stiffness has been employed to define the 
stiffness of the soil springs. Therefore, the distributed 
stiffness of the Winkler foundation was estimated based 
on the continuum approaches. 

2.2. Strong ground motions 
     Strong ground motion (SGM) selection can 
significantly modify the nonlinear response of structures. 
The procedure for record selection suggested by Ghafory 
Ashtiany et al. [8] has been employed in this paper which 
chooses a few strong ground motion records in order to 
get approximately the same result as a large set of 
records. Using the mentioned procedure can decrease the 
computational time significantly. In this study, the 
records selected are based on the natural period of each 
frame and are introduced in Tables 3 and 4. 
 

Table 3. The features of SGMs – Fixed base 
Story 
No. 

Period 
(s) SGM’s ID 

3 0.14 3-8-14-20-21-24-27-28 
6 0.44 2-4-10-12-20-21-23-30 
10 0.93 8-9-12-15-16-22-23-29 

Table 4. The features of SGMs – Flexible base 
Story 
No. 

Soil 
Type 

Period 
(s) SGM’s ID 

3 
B 0.15 3-8-14-20-21-24-27-28 
C 0.26 3-8-14-20-21-24-27-28 
D 0.34 2-4-10-12-20-21-23-30 

6 B 0.45 2-4-10-12-20-21-23-30 

3 

 
C 0.64 1-4-6-10-12-15-17-23 
D 0.81 1-4-12-22-23-24-25-26 

10 
B 0.93 8-9-12-15-16-22-23-29 
C 1.2 8-9-12-15-16-22-23-29 
D 1.4 5-7-13-15-19-23-28-31 

 Discussion and Results  

     Incremental dynamic analysis is performed for each 
frame which has been founded on the soft, medium and 
hard soil for the case of fixed-base and flexible-base 
assumption. The summarized IDA curves are shown in 
Figure 2 for each frame based on soil type. Results show 
that SFSI is beyond the increasing period of interaction 
systems. This phenomenon can significantly affect the 
capacity of frames. So that the endpoints of IDA curves 
which present the capacity of structures, decrease with 
considering SFSI. In other words, dynamic instability 
will occur before the expected capacity corresponding to 
fixed-base assumptions has been achieved. This 
instability increases with increasing shear wave velocity 
of soils and height of frames. For example, 3 and 6 storied 
frames with the flexible base, which have been founded 
on soft soil, reach ultimate capacity in 52% and 45% of 
spectral acceleration corresponding to a fixed base, 
respectively. 

 

Figure 2. The comparison of summarized IDA curves of RC 
frames with shear wall in fixed and flexible base, a) Soil B, b) 

Soil C and c) Soil D 
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dynamic instability will occur before the expected capacity 
corresponding to fixed-base assumptions has been achieved. 
This instability increases with increasing shear wave velocity 
of soils and height of frames. For example, 3 and 6 storied 
frames with the flexible base, which have been founded on 
soft soil, reach ultimate capacity in 52% and 45% of spectral 
acceleration corresponding to a fixed base, respectively.
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