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ABSTRACT: Today, road Pavement Management Systems (PMS) require a transition from traditional
methods to automated approaches to ensure safety and reduce maintenance costs. With the advancement
of technology, including Autonomous Vehicles (AVs) and Intelligent Transportation Systems (ITS),
the need for automatic detection and segmentation of asphalt pavement distress has become critical.
However, developing deep learning-based models in this domain faces the critical challenge of the
scarcity and imbalance of training data. This study presents a novel approach for the automated detection
and segmentation of asphalt distress, aiming to assess pavement condition based on the hypothesis that
generating realistic synthetic data can overcome data limitations. In the proposed method, a Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-GP) was first developed to generate
high-quality and diverse crack images using the Crack500 dataset, ensuring training stability and
preventing mode collapse. Subsequently, a U-Net model was trained for pixel-wise segmentation on
the combined dataset (real and synthetic). The primary innovation of this research lies in integrating
the improved GAN architecture with a segmentation model to address overfitting and enhance model
generalization across various environmental conditions. Results demonstrated that adding synthetic
images significantly enhanced segmentation performance, achieving a Dice coefficient of 0.961 and
an Intersection over Union (IoU) of 0.925. Furthermore, qualitative assessment indicated the model’s
superior capability in detecting fine and complex cracks in other public datasets. Finally, by integrating
the model outputs into a Surface Condition Index (SCI), the proposed framework provides an intelligent,
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accurate, and cost-effective capability for assessing pavement conditions.

1- Introduction

Pavement Management Systems (PMS) are essential
planning tools that assist road authorities in decision-making
processes to maintain road networks in a timely and cost-
effective manner while ensuring user comfort and safety [ 1, 2].
Traditional planning approaches for pavement maintenance
often consider rehabilitation only after significant structural
failure has occurred. This reactive approach leads to more
severe and expensive rehabilitation measures and may create
unsafe conditions for road users before decisions are made.
Consequently, the reproducibility, accuracy, and objectivity
of distress detection are crucial advancements in this process.

Pavement cracks are a primary type of road distress and a
key concern in highway inspection. If not repaired in time, they
can lead to structural pavement failure. Automatic detection
of pavement distress relies on images captured by various
tools, utilizing two main methods: Image Processing (IP)
based models and Deep Learning (DL) based models. While
IP approaches use thresholding and edge detection, they often

*Corresponding author’s email: agolroo@aut.ac.ir

fail under complex conditions such as shadows or uneven
lighting. Conversely, DL advancements have significantly
improved crack identification. However, acquiring high-
quality data for training DL algorithms remains a serious
challenge. The number of crack images in public and on-site
datasets is limited, which is often insufficient for developing
robust prediction models [3, 4]. Furthermore, data imbalance
can severely affect model performance.

To address these limitations, Generative Adversarial
Networks (GANSs) have been proposed as a powerful method
for generating crack image datasets [5]. However, training
GANSs can suffer from issues such as gradient vanishing
and mode collapse. To overcome these challenges, the
Wasserstein  GAN with Gradient Penalty (WGAN-GP)
utilizes the Wasserstein distance to improve training balance
[6]. This study aims to develop an intelligent framework for
pavement condition assessment by employing WGAN-GP to
generate synthetic data, thereby enriching the training set for a
U-Net segmentation model using the CRACKS500 dataset [7].
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This approach aims to enhance accuracy and automatically
calculate the Surface Condition Index (SCI).

2- Methodology

The research methodology is organized into a four-stage
framework: Data Preparation, Synthetic Data Generation,
Modeling/Training, and Evaluation.

2- 1- Data Preparation

The public CRACKS500 dataset [7] was selected as
the primary source for training and evaluation. To ensure
computational efficiency and model compatibility, the images
were pre-processed. This included resizing all images to
dimensions of 128x128 pixels and normalizing pixel values
to a standard range to facilitate faster convergence during the
training of the neural networks.

2- 2- Synthetic Data Generation

To address the data imbalance and scarcity, a WGAN-GP
model was developed. Unlike traditional GANs, WGAN-
GP employs the Wasserstein distance metric and a gradient
penalty term, which enforces the Lipschitz constraint. This
architecture significantly improves training stability and
prevents the generator from producing a limited variety of
samples (mode collapse). The model was trained on the pre-
processed real images to learn the statistical distribution of
crack features. Once trained, the generator was used to create
a large set of realistic synthetic pavement crack images,
encompassing various crack topologies (longitudinal,
transverse, alligator).

2- 3- Segmentation Model

A U-Net architecture was utilized for the pixel-wise
segmentation of pavement distresses. The U-Net is an
encoder-decoder network known for its effectiveness in
biomedical image segmentation and linear feature extraction.
In this study, the U-Net was trained using a hybrid dataset
consisting of the original real images and the newly generated

Longitudinal Crack
Length: 143.55 cm
Width: 0.29 cm
Density: 0.0039
Severity: Low
SCI: 0.05%

MnR: Do nothing

synthetic images. The integration of synthetic data serves
as a sophisticated data augmentation strategy, exposing the
model to a wider variety of crack patterns and background
textures.

2- 4- Surface Condition Index Calculation

Following segmentation, the binary masks output by
the U-Net (where 1 represents a crack and O represents
background) were processed to calculate the SCI. The SCI is
a quantitative metric derived from the density and severity of
the detected cracks, allowing for the translation of visual data
into actionable numerical ratings for Pavement Management
Systems.

3- Results and Discussion

The proposed framework was evaluated based on its
ability to generate realistic images and the subsequent
improvement in segmentation accuracy.

3- 1- Impact of Synthetic Data

The evaluation revealed that the WGAN-GP model
successfully generated high-fidelity images that closely
mimicked the texture and geometric properties of real asphalt
cracks. When these synthetic images were added to the
training set, the U-Net model’s ability to generalize improved
significantly. The model achieved a Dice Coefficient of 0.961
and an Intersection over Union (IoU) of 0.925. These metrics
indicate a high overlap between the predicted crack masks
and the ground truth, surpassing models trained solely on
limited real data.

3- 2- Automated Assessment and SCI

The system demonstrated high robustness in detecting fine
and complex cracks under varying conditions. A key output of
this research is the automated calculation of the SCI. Figure
1 presents example of longitudinal crack. For each sample,
the figure displays the model’s segmentation prediction,
skeleton image, and the final calculated SCI value. The close

Skeleton Image

Fig. 1. Example of longitudinal crack alongside the results of SCI calculation.
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resemblance between the prediction and the skeleton image
confirms the model’s precision, while the SCI value provides
a direct metric for maintenance decision-making.

The results indicate that the proposed method not only
identifies the location of the distress but also quantifies
its severity accurately. The SCI values derived from the
automated segmentation were consistent with visual
inspections, validating the potential of this framework to
replace manual, labor-intensive surveys.

4- Conclusion

This study established an automated, intelligent
framework for road pavement condition assessment,
specifically addressing the challenge of data scarcity in
deep learning applications. By integrating WGAN-GP for
synthetic data generation with a U-Net segmentation model,
the research successfully demonstrated a reliable method for
detecting asphalt distresses.

Key findings and contributions include:

* The WGAN-GP model proved effective in generating
high-quality, diverse synthetic crack images, successfully
mitigating the issues of data imbalance and scarcity;

* Training the U-Net model with a hybrid dataset (real +
synthetic) resulted in superior performance, achieving a
Dice coefficient of 0.961 and an IoU of 0.925;

» The model showed high capability in identifying fine and
complex cracks across different environmental conditions,
demonstrating better generalizability than models trained
only on real data;

* The integration of the segmentation output into an
automated SCI provides a critical, low-cost, and accurate
tool for PMS, facilitating timely maintenance decisions.
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Fig. 1. Sample images of longitudinal, transverse and alligator cracks from the Crack500 dataset.
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Table 1. Generative model architecture.
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Table 2. Discriminator model architecture.
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Table 3. Hyperparameters to fine-tune the WGAN-GP

model
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1. Adam

2. Mean Squared Error (MSE)

3. Structural Similarity Index Measure (SSIM)
4. Dice Coefficient (DC)

5. Peak Signal-to-Noise Ratio (PSNR)
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Fig. 2. Generating the image of distresses with WGAN-GP model in 1, 50, 100, 150, and 200 iterations.

WGAN-GP Juo L sjlugy 23 ngad 2dgs =) ¥
sl ol 5 S WGAN-GP Jse sl gl )byl 385 wubats 5l aw
skl ¥ S5 el 05 oolial cJlaw] slacS 5 s gian yslas ags
Jbo bug egias clliul oSy poai g ol I il
oL Ly Yer 930 e e O g0l o), S5 5 WGAN-GP
Lol a0 lis 1y slal gyt yolie polal @ )1ST 0 a0 o
ol (650 ddgl dls o simdy i &S Gl o 5B sl S

S podciyy5 slagsll g 03,8 Iy sk gyoy polal VO LSS L

VLYo M Lol S5 G g ) abable cobIS YA Sad
Copde g dal )l 55ge] 0aiiS paenss 45 amd o 1) 1, abadls coLIKS
29085 iy 313 Ol Sloddas cpl cal oy Sl iallg
b robad Mg5 5 (saupise sl Bree 63653k Slslxe 5 Vb 509 b
Eouas pobas Mg 0 WGAN-GP Juo LUlg colsl j3 5,8 wal)
uisu Jae 3,Slas bl 15 g 039y el 03l degesee dps o

.C;u»‘b.\..ﬁ@u)).g

1. NVIDIA Tesla P100

VA



Cog Sy Jho 3 Slas =Y Y

b cdlaw] oSy can yisu o 1) cog Jie 3,Sles jisu oyl
Glaas;d b odds 03538] poliat g B¢+ S S Lol 03ld degosno jl edlal
43l WEAN-GP Jao bugs 00l M8 (sguae pglad jl il
2 Shusl o Guwlb coyps dbas e 5 glaods ¥ Jods .ol ouis
T 9 0SS Lol ooy degemme b oS oy Jbo sl gloin] (g9,
bis 1y ol 0s0d 55g0] 0aid 039381 yrglas Jols 1500 30> dcgaro
kol 0ald degomme b &S Cig Jho 2)Sles 50> @yle 4 a0
kol 0315 acgame 4y 00 03933] gluat 5| alisee sl b oad b0l
g oo duslio

e 5 (rolie] i bl g YO+ Ll Jas ool
Gop Shudl o /Ayl ol Copd oYY plp s jlads oS
o 03938l ygual (Mo yd Yo x) B (9938] .l IAFA oy glois]
S oad glanl g9y STyl g ald cups il 3 (Jix dge
9 AV ply Gl colps Gli8l /oYY e 4 s ials csly
(Aoyd o m) N0+ 9581 5 </AVY il slaan] (g9 STyl
e ool piey Gl el 03938l g (Moyd Voo (gm) YO+
Je 453l (L5 (3o)3 Vv pguad B (39381 b 538> (g 0
ae 5 </AA b oy &g o) oYL (6050L cud s loen

LY u.sLo) ‘U"‘ 2 05M.C BABL’ Cawd /A0 ).3‘);. 8l‘°“>‘ S9N JI)L»I

S5 ) amd e Ui |y pbjgal )3 (6 pSady iy o Mimd o o)Lt
@ &S WS (o0 My (HBly sl Shy 9 YL oy b pslad Jue e
2 Jae QU5 g a5 o (silodnd |y (Bl cllin] oS5 3.5 b
il el amo oo LS St SV g Sajeel L) 335 s (58,5
a3l e xSl elojlas | WGAN-GP Jus 5Ske
o ool 295 4 JUSiw didiny Conmd gl oy o6 Lo canlis
calu adls Wluye wWShe slas ol s 555 polis ol
dulie S g 4 JUiSw A G 9 puld copd syl
o 03035 o gtan gl g il (Slacs 5 (Bly gl i (oS
XLl Olaye (p1She slad aie din (jgel LSS Voo
My g (Bl polal o JuSy v lagls & wad e (i
Jao Jdo lawgs 2ly slaodly SOo5 o, sy jlis oS canl oS
5l cnlods orimd sl +/AR Mo b (g sl el sl il
gl &8 Amd e Ui il g S« olidg, Bl 1 4 CusV
s oSy 4y ) il (elocS 5 IS bl by ey
(S SaShy Vb Sligen » 25T /A Sl b ply el
il Sl slo Sy siloil  Jse 2l 4 3 oS5 0554,
YV oy slie b g ds JUSows dldin o coles )3 amd oo (LS 1,
Sp ollsel b ng bl My polal g CudS oamalis

Syl )18 0,8 cpl (sl (amlio 0390500 3 45

Oiglojl dcgazme — 0o S )T 0015 A gacre 4y buwd ABLS] o381 godly iliske (sladuo )b U Cgy Jue 3,5 .F Jous

Table 4. U-Net model performance with different percentages of incremental data added to the
Crack500 dataset (test data)
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Fig. 5. Training and validation error plot for the U-Net model - original dataset.
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Fig. 11. Segmentation outcomes for the U-Net model with 1000 additional synthetic images.
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Table 5. Performance of the optimal segmentation model on different datasets.
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Fig. 12. Examples of longitudinal and transverse cracks alongside the results of SCI calculation.
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Alligator Crack
Area: 12516.69 cm?
Density: 0.3395
Severity: High
SCl: 23.44%

MnR: Partial or full-depth patch; Overlay; Reconstruct

Alligator Crack
Area: 18611.93 cm?
Density: 0.5049
Severity: High
SCl: 34.86%

MnR: Partial or full-depth patch; Overlay; Reconstruct

Skeleton Image with Polygon
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Fig. 13. Examples of alligator cracks alongside the results of SCI calculation.
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