

Amirkabir Journal of Civil Engineering

Amirkabir J. Civil Eng., 55(5) (2023) 203-206 DOI: 10.22060/ceej.2023.5115.7593

Stability Analysis of Real-Time Hybrid Simulation with a Tuned Liquid Damper

D. Jalili, M. Nasiri*, M. Rezazadeh

Department of Mechanical Engineering, Golpayegan College of Engineering, Isfahan University of Technology, Iran.

ABSTRACT: Real-time hybrid simulation (RTHS) is a form of testing where the physical component of structure communicate with numerical model which simulates the behavior of the rest of the structure. Interface forces between the experimental and computational substructure are imposed by an actuator. The resulting displacement and velocity of the experimental substructure are fed back to the computational engine to determine the interface forces applied to the computational and experimental substructures for the next time step. In this paper, the RTHS technique is used to conduct experiments with a numerically simulated structure and physically tested tuned liquid damper (TLD). One very important factor which causes instability in RTHS is the actuator's inability to perform the commands from the simulator in real-time. In RTHS, an actuator dynamic is approximated by a pure time-delay, and the time-delay in the closed loop system causes inaccuracy results or even instability. Therefore, Delayed Differential Equation (DDE) is used to determine the critical time-delays depending on the TLD parameters. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio has a lower limit for low delays and upper limit for high delays to remain stable. As frequency and amplitude ratios increase, the margin of stability for the mass ratio increases.

Review History:

Received: Jan. 14, 2022 Revised: Nov. 02, 2022 Accepted: Nov. 07, 2022 Available Online: Apr. 21, 2023

Keywords:

Tuned liquid damper (TLD) real-time hybrid simulation (RTHS) delayed differential equation (DDE) time-delay Stability.

1-Introduction

Recently, the tuned liquid damper (TLD) is increasingly being employed to suppress the dynamic response of tall buildings due to its efficiency, low cost, and ease of implementation [1]. A TLD is generally designed as a rectangular or cylinder-shaped device, installed at the top of structures [2]. Real-time hybrid simulation (RTHS) is a novel experimental technique to investigate the dynamic behavior of structures [3]. Several studies introduced the RTHS method in detail for investigating the dynamic behavior of a TLDstructure system [4, 5]. In the present study, the stability of RTHS with rectangular TLD is performed using eigen value approach.

2- Mathematical Model

A two-story structure with a TLD, modeled as a shear building, is shown in Fig. 1. The governing Eq. (1-3) is used to describe the vibration behavior of the structure.

$$c_{s}\dot{x}_{s} + k_{s}x_{s} + \frac{m_{2}}{m_{1}}(-c_{2}\dot{x}_{2} - k_{2}x_{2} + c_{1}\dot{x}_{1} + k_{1}x_{1})$$
(2)

$$c\dot{x} + kx = \frac{m}{m_2}(-c\dot{x} - kx + c_2\dot{x}_2 + k_2x_2)$$
(3)

Fig. 1. Model of a two-story building with TLD

*Corresponding author's email: m.nasiri@iut.ac.ir

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

Fig. 2. Schematic of a RTHS for damper testing

The schematic of RTHS for TLD testing is illustrated in Fig. 2.

The TLD is modelled as an equivalent solid mass damper with non-linear stiffness and damping as shown in Fig. 3.

The non-dimensional amplitude is defined as Eq. 4

$$\Lambda = \frac{A}{L} \tag{4}$$

The nonlinear damping and stiffness ratios can be defined using non-dimensional amplitude as follows.

$$\xi = 0.05 \; \Lambda^{0.35} \tag{5}$$

$$k = \begin{cases} 1.075 \ \Lambda^{0.25} & \Lambda < 0.03 \\ 2.52 \ \Lambda^{0.25} & \Lambda > 0.03 \end{cases}$$
(6)

for deriving the state-space model of the structure, state vector (X) is selected according to Eq. (7).

$$X = \begin{bmatrix} x_1 & x_2 & x & \dot{x}_1 & \dot{x}_2 & \dot{x} \end{bmatrix}^T$$
(7)

The state-space model of a linear time-invariant (LTI) system with a fixed time-delay (τ) can be written as Eq. (8).

$$\dot{X}(t) = A_0 X(t) + A_1 X(t - \tau)$$
(8)

The characteristic equation of differential Eq. (8) is derived as follows.

$$\det\left(\lambda I - A_0 - A_1 e^{-\tau\lambda}\right) = 0 \tag{9}$$

The non-dimensional parameters are defined as Eq. (10).

Fig. 3. Effective parameters for stability analysis of hybrid simulation for TLD

$$\omega_{1} = \sqrt{\frac{k_{1}}{m_{1}}} , \quad \zeta_{1} = \frac{c_{1}}{2\sqrt{k_{1}m_{1}}}$$

$$\omega_{2} = \sqrt{\frac{k_{2}}{m_{2}}} , \quad \zeta_{2} = \frac{c_{2}}{2\sqrt{k_{2}m_{2}}} , \quad \mu_{2} = \frac{m_{2}}{m_{1}}$$
(10)
$$\omega = \sqrt{\frac{k}{m}} , \quad \zeta = \frac{c}{2\sqrt{km}} , \quad \mu = \frac{m}{m_{2}}$$

The matrices A_0 and A_1 are defined as Eq. 11 using nondimensional parameters.

Using matrices A_0 and A_1 , the stability analysis of RTHS can be performed by solving delay differential Eq. 9.

3- Results and Discussion

The effect of equivalent mechanical properties including effective mass, natural frequency, and damping ratio of the TLDs, on the stability of RTHS, is investigated. The root locus of the unstable root versus time-delay of the actuator is depicted in Fig. 4 using eigen value method. The stability margin in (Λ , τ)-plane and (μ , τ)-plane are shown in Fig. 5 and Fig. 6, respectively.

Fig. 4. Root locus of unstable root versus time-delay of the actuator using μ =0.05 and Λ =0.03 for 0 < τ < 0.1 sec

Fig. 5. Stability margin in (Λ , τ)-plane for μ =0.04

Fig. 6. Stability margin in (μ, τ) -plane for Λ =0.02

4- Conclusions

The effect of geometric sizes of TLD and time-delay of the hydraulic actuator on the stability of real-time hybrid simulation is discussed. The stability analysis is carried out by numerically simulating the structure and experimentally testing TLD device. It is found that the stability margin for time delay increases as non-dimensional amplitude is increases. Moreover, the stability margin for time delay decreases as the mass ratio of TLD increases. The root locus also shows, half bifurcation due to increase of actuator time delay.

References

[1] K. McNamara, B. Awad, M. Tait, J. Love, Incompressible smoothed particle hydrodynamics model of a rectangular tuned liquid damper containing screens, Journal of Fluids and Structures, 103 (2021) 103295.

- [2] Z. Fei, W. Jinting, J. Feng, L. Liqiao, Control performance comparison between tuned liquid damper and tuned liquid column damper using real-time hybrid simulation, Earthquake Engineering and Engineering Vibration, 18(3) (2019) 695-701.
- [3] P. Shoaei, H.T. Oromi, A combined control strategy using tuned liquid dampers to reduce displacement demands of base-isolated structures: a probabilistic approach, Frontiers of Structural and Civil Engineering, 13(4) (2019) 890-903.
- [4] F. Zhu, J.T. Wang, F. Jin, L.Q. Lu, Y. Gui, M.X. Zhou, Real-time hybrid simulation of the size effect of tuned liquid dampers, Structural Control and Health Monitoring, 24(9) (2017) e1962.
- [5] J.T. Wang, Y. Gui, F. Zhu, F. Jin, M.X. Zhou, Real-time hybrid simulation of multi-story structures installed with tuned liquid damper, Structural Control and Health Monitoring, 23(7) (2016) 1015-1031.

HOW TO CITE THIS ARTICLE

D. Jalili, M. Nasiri, M. Rezazadeh, Stability Analysis of Real-Time Hybrid Simulation with a Tuned Liquid Damper , Amirkabir J. Civil Eng., 55(5) (2023) 203-206.

DOI: 10.22060/ceej.2023.5115.7593

This page intentionally left blank

نشريه مهندسي عمران اميركبير

نشریه مهندسی عمران امیرکبیر، دوره ۵۵، شماره ۵، سال ۱۴۰۲، صفحات ۹۴۳ تا ۹۶۶ DOI: 10.22060/ceej.2023.5115.7593

تحلیل پایداری شبیهسازی هیبرید زمان – واقعی با میراگر تنظیم شده مایع

داریوش جلیلی، مصطفی نصیری*، مرضیه رضازاده

گروه مهندسی مکانیک، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، ایران.

تاریخچه داوری: دریافت: ۱۴۰۰/۱۰/۲۴ بازنگری: ۱۴۰۱/۰۸/۱۱ پذیرش: ۱۴۰۱/۰۸/۱۶ ارائه آنلاین: ۱۴۰۲/۰۲/۰۱

کلمات کلیدی: میراگر تنظیمشده مایع شبیهسازی هیبرید زمان– واقعی معادلات دیفرانسیل تأخیری تأخیر زمانی پایداری

و از طریق شکستن موج از بین میبرد. شکل میراگر تنظیم شده مایع به

گونهای طراحی میشود که فرکانس آن با طول و عمق مخزن مایع تعیین

می شود به طوری که به فرکانس اصلی سازه نزدیک باشد. میراگر تنظیم شده

مايع با تنظيم فركانس نوسانات مايع، انرژي لرزش سازه را از بين مي برد و

میرایی ذاتی آن ناشی از شکستن موج و تاثیر مایع به دیوارههای ظرف میراگر

تنظیم شده مایع است. برای بهبود عملکرد سازههای انعطاف پذیر در معرض

نیروهای لرزهای یا باد، از فن آوریهای کنترل سازه متعددی برای کاهش

برای مطالعات عددی مربوط به میراگرهای تنظیم شده مایع، مدلهای

نظری متعددی از جمله مدل موج آب کم عمق [1]، مدل معادل با میراگر

جرمی تنظیم شده[†] [۲] و مدل میرایی سختی غیرخطی⁶ [۳] پیشنهاد شده

است. در سالهای اخیر، برخی از رویکردهای عددی پیشرفته مانند روش

المان محدود [۴] و هیدرودینامیک ذرات [۵] نیز برای شبیهسازی حرکت

Eqiuvalent Model Analogizing with Tuned Mass Damper

Shallow Water Wave Model

Nonlinear Stiffness Damping

5

ارتعاشات سازه استفاده شده است.

خلاصه: شبیه سازی هیبرید زمان واقعی، روشی برای تست اجزای فیزیکی یک سازه در کنار شبیه سازی عددی بقیه اجزای سازه است. نیروی بین قسمت فیزیکی و قسمت عددی توسط عملگر اعمال می شود. جابجایی و سرعت سازه فیزیکی به قسمت محاسباتی پس خوراند می شود تا نیروی لازم برای اعمال به قسمت فیزیکی بدست آید. در این مقاله، از شبیه سازی هیبرید زمان واقعی برای ارزیابی عملکرد یک میراگر تنظیم شده مایع استفاده شده است. یکی از عوامل مهم در ناپایداری این شبیه سازی، عدم توانایی عملگر در اجرای فرمان های ارسالی از طرف شبیه ساز زمان – واقعی است. در شبیه سازی هیبرید زمان – واقعی، دینامیک عملگر با یک تأخیر زمانی ثابت تقریب زده می شود که این تأخیر زمانی در حلقه بسته شبیه سازی هیبرید زمان – واقعی، دینامیک عملگر با یک تأخیر معادلات دیفرانسیل تأخیری برای تعیین تأخیر زمانی در حلقه بسته شبیه سازی باعث کاهش دقت یا ناپایداری می شود. بنابراین از نتایج شبیه سازی نشان می دهد که در تأخیر زمانی در حلقه بسته شبیه سازی باعث کاهش دقت یا ناپایداری می شود. بنابراین از نتایج شبیه سازی نشان می دهد که در تأخیر زمانی در حلقه بسته شبیه سازی باعث کاهش دقت یا ناپایداری می شود. بنابراین از نتایج شبیه سازی نشان می دهد که در تأخیرهای زمانی بحرانی بر اساس پارامترهای میراگر تنظیم شده مایع استفاده شده است. نتایج شبیه سازی نشان می دهد که در تأخیرهای زمانی کم، محدوده پایداری برای نسبت جرم دارای حد پایین است و در تأخیرهای نتایج شبیه می باد. در نسبت جرم دارای حد بالا است. علاوه بر این، با افزایش نسبت خرم و دامنه، محدوده پایداری برای نسبت جرم کاهش می باد. در نسبت جرمهای بالا، حداکثر مقدار محاز تأخیر زمانی با افزایش نسبت فرکانس افزایش یافته است ولی در نسبت جرمهای پایینتر، محدوده مجاز تأخیر زمانی با افزایش نسبت فرکانس ابتدا کاهش و سپس افزایش یافته است.

۱ – مقدمه

سیستمهای کنترل ارتعاشات سازه با توجه به نیاز میتوانند به سه نوع فعال، غیر فعال و نیمه فعال تقسیم شوند. میراگرهای تنظیم شده جرمی[٬] و میراگرهای تنظیم شده مایع^۲، سیستمهای کنترل ارتعاشات غیرفعالی هستند که جذب کننده لرزشهای دینامیکی بوده و به منظور کاهش ارتعاشات سازهها به کار گرفته میشوند. محققان بسیاری، استفاده از میراگرهای تنظیم شده مایع یا میراگرهای تنظیم شده جرمی فعال را به منظور کاهش ارتعاشات سازههای مختلف، از جمله سازههای جدا شده از پایه در معرض باد یا تحریک لرزهای، بررسی کردهاند. در میان سیستمهای دفع انرژی غیرفعال، میراگرهای تنظیم شده مایع به دلیل کم هزینه بودن، ثبات و نصب و نگهداری آسان آنها، توجه بسیاری را به خود جلب کرده است. میراگر تنظیم شده مایع، ارتعاشات سازه را از طریق نیروی مایع چسبیده به دیوارههای مخزن میراگر

¹ Tuned Mass Damper (TMD)

² Tuned Liquid Damper (TLD)

^{*} نویسنده عهدهدار مکاتبات: m.nasiri@iut.ac.ir

مايع با مزاياى منحصر به فرد خود در ثبت اثر شكست موج استفاده شده است. همچنین آزمایشهایی برای توصیف خصوصیات فرکانس و اثر میرایی میراگرهای تنظیم شده مایع انجام شده است که نشان میدهد هر دو خاصیت فرکانس و اثرات میرایی میراگرهای تنظیم شده مایع به شدت با حجم مایع، اندازه هندسی مخزن و دامنه نوسان مرتبط است. مطالعات بسیاری با هدف در نظر گرفتن ماهیت تصادفی و عدم قطعیتهای مربوط به سازه انجام شده است. بی توجهی به عدم قطعیتها می تواند منجر به تولید طرحی با ضریب اطمینان پایین شود. بنابراین، بسیاری از محققان تلاش کردهاند تا از طریق یک رویکرد احتمالی، سیستمهای کنترل سازه را طراحی کنند [۶]. به دلیل غیرخطی بودن حرکت مایع در داخل مخزن، شبیه سازی های عددی و آزمایش مقیاس کوچک میز لرزان ٔ ممکن است عملکرد میراگرهای تنظیم شده مایع را به خوبی نشان ندهد. شبیه سازی هیبرید زمان – واقعی^۲، که یک روش تجربی جدید است، به منظور بررسی رفتار ساختمانها توسعه یافته است. این تست برای شبیه سازی سازه اصلی با پارتیشن بندی سازه به زیرسازههای فیزیکی و عددی انجام می شود. برای حفظ تعادل نیرو و استمرار جابجایی بین دو زیر سازهی فیزیکی و عددی، دادهها بهصورت زمان – واقعی منتقل می شوند [۷]. با توجه به تکنیک زیرسازه" در تست شبیه سازی هیبرید زمان- واقعی، رفتار غیرخطی با تست سیستم در مقیاس بزرگ یا حتی در مقیاس کامل میتواند مورد آزمایش قرار گیرد. تست شبیه سازی هیبرید زمان- واقعی به طور گسترده برای مطالعه ویژگیهای دینامیکی و كنترل راندمان دستگاههای میراگر غیرخطی، مانند میراگرهای الاستومریک غيرفعال و ميراگر مغناطيسي- رئولوژيکي مورد استفاده قرار مي گيرد [٨]. شبیه سازی هیبرید زمان – واقعی دو مزیت منحصر به فرد دارد. نخست اینکه مدل های کامل یا بزرگ در مقیاس بزرگ قابل آزمایش هستند و دیگر اینکه رفتار غیرخطی سازههای پیچیده را میتوان مورد بررسی قرار داد. در حال حاضر، شبیهسازی هیبرید زمان– واقعی برای مطالعه دستگاههای میراگر غیرخطی نیز استفاده شدهاند. عملکرد میراگر تنظیم شده مایع برای سازه یک درجه آزادی و چند درجه آزادی از طریق شبیهسازی هیبرید زمان- واقعی به طور جامع مورد بررسی قرار گرفته است. از آنجا که شبیهسازی دقیق حرکت غیرخطی شدید مایع در میراگرهای تنظیم شده مایع و و میراگرهای تنظیم شده مایع ستونی با روش عددی دشوار است، شبیهسازی هیبرید زمان– واقعی که به عنوان یک روش تجربی جدید توسعه یافته است، میتواند

آزمایش میراگرهای تنظیم شده مایع و و میراگرهای تنظیم شده مایع ستونی را به خوبی انجام دهد [۹].

هنگامی که از شبیه سازی هیبرید زمان – واقعی برای ارزیابی رفتار غیر خطی میراگر تنظیم شده مایع استفاده می شود، کل سازه را می توان به صورت عددی شبیهسازی کرد و به میراگر تنظیم شده مایع به تنهایی نیرو وارد کرد. علاوه بر این، هر مقداری را میتوان برای پارامترهای زیرسازه عددی انتخاب کرد. در نتیجه، شبیهسازی هیبرید زمان – واقعی سادهتر و اقتصادی تر از تست های میز لرزان خالص است. اجرای شبیه سازی هیبرید زمان – واقعی شامل چالش هایی در کنترل دقیق زیرسازههای تجربی و هماهنگسازی فرمان و سیگنال های اندازه گیری شده در طول آزمایش برای تضمین صحت و پایداری شبیهسازی هيبريد زمان– واقعى است. در شبيهسازي هيبريد، ممكن است فيدبک نيرو شامل خطای دامنه و یا تأخیر زمانی باشد که می تواند به دلیل خطاهای کنترل در ردیابی ٔ فرمان جابجایی، رفتار دینامیکی سروو هیدرولیکی ٛ و یا هر گونه تأخیر ناشی از کنترل دیجیتال در دریافت و اجرای دستورات باشد. تعدادی از محققان دریافتند که تأخیر زمانی در نیروی اندازهگیری شده میتواند به شدت عملکرد شبیهسازی هیبرید را تضعیف کند [۱۱، ۱۰]. اگر تأخیر زمان در بازگرداندن نیرو در سیستم از یک مقدار بحرانی فراتر رود، آن سیستم ناپایدار می شود. چالش دیگر در اجرای شبیهسازی هیبرید زمان– واقعی به دلیل خطاهای تصادفی در بازیابی بازخورد نیرو یا جابجایی ناشی از نویز الکتریکی است که معمولا در سیستمهای تست اجتناب ناپذیر است. از آنجا که فیدبک نیرو در تولید فرمان جدید استفاده می شود، روش شبیه سازی هیبرید زمان – واقعی می تواند بر صحت نتایج اثر منفی بگذارد و در بعضی موارد باعث نایایداری در نتایج تست شود. یک عامل بسیار مهم در ایجاد ناپایداری، دینامیک سیستم عملگر و عدم توانایی آن در اجرای فرمان صادر شده از طرف شبیهساز به صورت زمان- واقعی است. در شبیهسازی هیبرید ناگزیر از پذیرفتن این دینامیک ناخواسته بوده و لذا مطالعات زیادی بر روی پایداری این سیستمها با در نظر گرفتن دینامیک اضافه شده به صورت یک تأخیر زمانی خالص انجام شده است[۱۲]. تأخیر زمانی در شبیه سازی هیبرید به طور معمول به شکل های مختلفی چون تأخیر زمانی ثابت و یا تأخیر زمانی متغیر و متناسب با دینامیک سیستم در نظر گرفته شده است. چندین روش جبرانسازی برای به حداقل رساندن تأثیر تأخیر عملگر در نتایج شبیهسازی هیبرید زمان – واقعی ارائه شده است. هوریوچی و همکاران [۱۳] روشی مبتنی بر برونیابی جلوتر از جابجایی فرمان برای جبران تأخیر عملگر توسعه دادند. هوریوچی و کونو [۱۴] روش جبران دیگری را پیشنهاد کردند

¹ Shake Table

² Real-Time Hybrid Simulation (RTHS)

³ Substructuring

⁴ Tracking

⁵ Hydraulic Servo

که مبتنی بر فرض شتاب خطی ثابت سازه بود. کریون و اسپنسر [۱۵] برای جبران تأخیر زمانی و پسفاز، از روش پیش بینی پاسخ بر مبنای مدل استفاده کردند. برخی از روشهای دیگر اتخاذ شده برای جبران تأخیر محرک شامل پیش بینی کننده اسمیت⁽[۱۶]، جبران معکوس^۲ [۱۷]، اتصال مجازی^۳ [۸]، کنترل تطبیقی با جبران معکوس دینامیک سیستم^۴ [۲۱–۱۹]، کنترل کننده تطبیقی مبتنی بر خطاهای شناسایی شده آنلاین سیستم⁶ [۲۲] و جبران سازی بر اساس حد بالایی تأخیر^۶ [۳۲] هستند. روشهای جبران تاخیر دیگری نیز در شبیه سازی هیبرید زمان – واقعی وجود دارد که از جمله آنها می توان به روش های جبران پسفاز^۲ [۲۴] و فیدبک سرعت^۸ [۲۶،۲۵] اشاره کرد که در آنها از روشهای تئوری کنترل استفاده می شود تا اثر ناخواسته ناشی از تأخیر زمانی عملگر به حداقل برسد.

بیشتر مطالعات پیشین بر روی تجزیه و تحلیل میراگر تنظیم شده مایع به ویژه اثر میرایی غیرخطی آنها انجام شده است. همچنین مطالعات پارامتری نیز برای بررسی تأثیر نسبت جرم، میرایی سازه و سختی و اندازه هندسی روی تأثیرات کاهش لرزش میراگر تنظیم شده مایع انجام شده است. در این مقاله، اثر تأخیر زمانی عملگر در محدوده پایداری شبیهسازی

هیبرید زمان واقعی با میراگر تنظیم شده مایع بررسی شده است. عدم توانایی عملگر در اجرای فرمان های ارسالی از طرف شبیه ساز زمان – واقعی با تأخیر زمانی ثابت مدل سازی شده است. تأخیر زمانی عملگر در سیستم حلقه بسته باعث کاهش دقت و حتی ناپایداری شبیه سازی زمان – واقعی می شود. از معادلات دیفرانسیل تأخیری برای تعیین تأخیر های زمانی بحرانی بر اساس پارامترهای میراگر تنظیم شده مایع و سازه استفاده شده است. اثر نسبت دامنه، نسبت جرم و نسبت فرکانس میراگر بر محدوده پایداری شبیه سازی هیبرید زمان – واقعی بررسی شده است.

۲- معادلات حاکم

میراگر مایع مطابق شکل ۱، یک مخزن مستطیلی با نوسانهای افقی در جهت x در نظر گرفته می شود. فرض می شود که حرکت ذرات مایع در این مخزن به صورت دو بعدی و در صفحه xz انجام می شود. طول مخزن مستطیل L، عرض آن B در راستای محور y و عمق مایع در حالت سکون برابر H فرض می شود. مبدا دستگاه مختصات متعامد در وسط سطح آزاد مایع در حال سکون در نظر گرفته می شود. پارامتر η بیانگر جابجایی سطح آزاد مایع نسبت به محور x است.

در استخراج معادلههای تلاطم از فرضیات زیر استفاده شده است.

الف – تراکم ناپذیری مایع: تلاطم مایع با سطح آزاد در مخزن، نمی تواند اختلاف فشار زیادی در مایع ایجاد کند و بنابراین اثر تراکم پذیری مایع در نظر گرفته نمی شود.

¹ Smith Predictor

² Inverse Compensation

³ Virtual Coupling

⁴ Adaptive Control by Inverse Compensation of the System Dynamics

⁵ Adaptive Controller Based on the Online Identified System Errors

⁶ Compensation Based on Upper Bound Delay

⁷ Lead Compensator

⁸ Velocity Feedforward

ب- غیرچرخشی بودن حرکت مایع: برای مایعات با ویسکوزیته کم، اثر اصطکاک فقط در لایه مرزی نزدیک به کف مخزن وجود دارد. با توجه به اینکه ضخامت لایه مرزی بسیار ناچیز است، بنابراین از اثر ویسکوزیته کل جریان میتوان صرفنظر کرد. عدم وجود اصطکاک باعث عدم ایجاد نیروهای برشی و در نتیجه غیرچرخشی بودن سیال میشود.

ج- فشار ثابت در سطح آزاد مایع: مایع موجود در مخزن در تماس با هوای محیط است و بنابراین فشار مایع در سطح آزاد، ثابت و برابر فشار اتمسفر در نظر گرفته می شود.

د- عدم وجود پدیده شکست موج: بر اساس نظریه امواج، در صورتی که مطابق شکل ۱، شرط _{0.78 >} <u>۳</u> برقرار باشد، میتوان سطح آزاد مایع را در هنگام تلاطم، پیوسته و بدون شکستگی در نظر گرفت.

با این فرضیات، معادله پیوستگی حاکم بر مایع درون مخزن به صورت زیر است.

$$\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z} = 0 \tag{1}$$

که **u** و **W** به ترتیب مولفههای سرعت ذرات مایع در راستای X و Z هستند. با در نظر گرفتن جریان ذرات مایع در خارج از لایه مرزی کف مخزن، جریان سیال به صورت جریان پتانسیل در نظر گرفته می شود. بنابراین معادله مومنتم مایع به صورت معادلههای ناویراستوکس دوبعدی زیر خواهند بود [۲۷].

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} - \ddot{x}_g \tag{Y}$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g \qquad (\texttt{Y})$$
$$-(H - H_b) \le z < \eta$$

 $-(H-H_b) \leq z < \eta$

ho که t بیانگر زمان، x_g شتاب تحریک افقی مخزن، g شتاب گرانش، ho چگالی مایع، p فشار و η ارتفاع سطح آزاد مایع هستند. معادله های حرکت برای لایه مرزی کف مخزن به صورت زیر خواهند بود.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} \pm \frac{\partial^2 x}{\partial z^2} - \ddot{x}_s$$
(*)

$$\frac{1}{\rho}\frac{\partial p}{\partial z} = -g \qquad -H \le z \le -(H - H_b) \tag{(a)}$$

که در آنها H_b ضخامت لایه مرزی است که کمتر از چند درصد طول L بوده و σ بیانگر لزجت سینماتیکی مایع است. روی دیوارههای عمودی و در کف مخزن، سرعت سیال در جهت عمود بر سطح، صفر است و شرایط مرزی ۶ و ۷ بدست میآید. پارامتر η که بیانگر جابجایی سطح آزاد مایع در جهت z است، وابسته به متغیرهای x و t بوده و بنابراین سرعت سطح آزاد را میتوان طبق رابطه ۸ بدست آورد. علاوه بر این، با توجه به اینکه مخزن آب تحت فشار نیست، بنابراین مطابق رابطه ۹، فشار سطح آزاد همان فشار محیط است. بنابراین به طور کلی شرایط مرزی حاکم بر مایع درون مخزن به صورت زیر خواهند بود [۲۸].

روی سطح ازاد

$$w = \frac{D\eta}{Dt} + \frac{\partial\eta}{\partial t} + u \frac{\partial u}{\partial x}$$
(٨)

روی سطح آزاد
$$p = p_0$$
 (۹)

 $\phi = F(x,t) \cosh\left[k(H+z)\right] \tag{(1.)}$

$$p_0 = \frac{1}{4} m_w \frac{gH}{R} T_0 \qquad , \qquad x = -\frac{l}{2} \tag{10}$$

$$p_n = \frac{1}{4} m_w \frac{gH}{R} T_n \quad , \quad x = \frac{l}{2} \tag{19}$$

که
$$T_0 e_n$$
 و T_n به صورت زیر بدست می آیند.

$$T_{0} = \frac{1}{H^{2}} \left[\left(\eta_{0} + H \right)^{2} + \frac{2}{k^{2}} \left(\frac{\partial^{2} \eta_{0}}{\partial x^{2}} \right) \left(\eta_{0} + H - H_{\varphi\sigma} \right) \right]$$
(1V)

$$T_{n} = \frac{1}{H^{2}} \left[\left(\eta_{n} + H \right)^{2} + \frac{2}{k^{2}} \left(\frac{\partial^{2} \eta_{n}}{\partial x^{2}} \right) \left(\eta_{n} + H - H_{\varphi\sigma} \right) \right]$$
(1A)

جرم مایع درون مخزن و $\eta_0 = \eta_0 + \pi$ به ترتیب ارتفاع سطح آزاد مایع در x=L/2 = x=-L/2 هستند. نیروی برشی از اختلاف فشار وارد بر دیوارهای عمودی دو طرف مخزن بدست میآیند.

$$F_{TLD} = p_n - p_0 = \frac{1}{4}m \, \frac{gH}{R} (T_n - T_0) \tag{19}$$

با مشخص شدن نیروی برشی، اندرکنش میراگر و سازه را میتوان بدست آورد. برای این منظور، یک سازه N درجه آزادی همراه با میراگر مطابق شکل ۲ در نظر گرفته میشود. در مدلسازه برشی، جرم طبقات متمرکز و حرکت جرم فقط در راستای محور x فرض میشود. معادله حاکم بر حرکت سازه به صورت زیر خواهد بود [۲۹].

$$f_{d} = \frac{\sqrt{(1 + (4\xi^{2} - 1)\beta^{2})^{2} + 4\xi^{2}\beta^{6}}}{1 + (4\xi^{2} - 2)\beta^{2} + \beta^{4}}$$
(Y•)

که C، M و K به ترتیب ماتریسهایی با ابعاد $N \times N$ و K برای جرم، میرایی و سختی سازه هستند. بردار x نشان دهنده تغییر مکان نسبی طبقات سازه، بردار f بیانگر تحریک افقی خارجی است و بردار f_{TLD} نیروی ناشی از

با استفاده از میدان پتانسیل در نظر گرفته شده، مولفه عمودی سرعت بر حسب مولفه افقی سرعت بیان شده و سپس با انتگرال گیری نسبت به Z از معادلههای ۱ تا ۳ از کف مخزن تا سطح آزاد مایع، معادله های حاکم به صورت زیر بدست میآیند.

$$\frac{\partial \eta}{\partial t} + H \sigma \frac{\partial \left[\phi u(\eta) \right]}{\partial x} = 0 \tag{11}$$

$$\frac{\partial u(\eta)}{\partial t} + (1 - T_{H}^{2})u(\eta)\frac{\partial u(\eta)}{\partial x} + g\frac{\partial \eta}{\partial x} + g\frac{\partial \eta}{\partial x} + gH\sigma\varphi\frac{\partial^{2}\eta}{\partial x^{2}}\frac{\partial \eta}{\partial x} = \frac{v}{(\mu + H)}\int_{-H}^{-(H - H_{b})}\frac{\partial^{2}u}{\partial z^{2}}dx - \ddot{x}g$$
(17)

که پارامترهای
$$\phi$$
 ، $T_{
m _{H}}$ و σ به صورت زیر تعریف می شوند.

$$\phi = \frac{\tan\left[k\left(H+\eta\right)\right]}{\tan\left(kH\right)}, T_{H} = \tan\left[k\left(H+\eta\right)\right], \sigma = \frac{\tan\left(kH\right)}{kH} \quad (1\%)$$

که k عدد موج بوده و از روش جداسازی متغیرها بدست میآید. تلاطم مایع درون مخزن باعث ایجاد اختلاف در ارتفاع سطح آزاد مایع در دیوارهای عمودی مخزن میشود. اختلاف فشار ناشی از اختلاف ارتفاع سطح آزاد مایع در دیوارهای عمودی باعث یک نیروی برشی در کف مخزن میشود. توزیع فشار وارد بر دیوارهای عمودی مخزن با در نظر گرفتن فشار هیدرواستاتیک و شتاب افقی مایع به صورت زیر بدست میآید.

$$\frac{1}{\rho}(P - P_0) = g(\eta - z) - \frac{1}{k^2} \left[\frac{\partial^2 u(\eta)}{\partial x \, \partial t} - \frac{\partial^2 u(z)}{\partial x \, \partial t} \right] \tag{14}$$

در معادله بالا p_0 فشار سطح آزاد مایع، z عمق مایع، (η) مولفه افقی سرعت مایع در سطح مخزن و (z) مولفه افقی سرعت مایع در عمق z هستند. با انتگرال گیری نسبت به z از معادله ۱۴، فشار کل وارد بر هر کدام از دیوارهای عمودی مخزن بدست میآید. فشار کل وارد بر دیوارهای عمودی واقع در x = L/2 و x = L/2 به ترتیب به صورت زیر محاسبه می شود.

شکل ۲. اندرکنش یک میراگر تنظیم شده مایع و سازه برشی

Fig. 2. Interaction of a TLD and shear structure

میراگر مایع بوده و تنها در سطر مربوط به بالاترین طبقه سازه اعمال شده و مابقی مولفهها صفر منظور میشوند. معادله ماتریسی ۲۰ با معادلههای تلاطم مایع درون میراگر مایع کوپل بوده و باید به صورت همزمان حل شوند. این کوپل معادلات ناشی از آن است که نیروی میراگر وابسته به ارتفاع سطح آزاد مایع (η) در دیوارهای عمودی در دو انتهای مخزن بوده و مقدار η از حل معادلههای تلاطم بدست میآید.

مدل دینامیکی میراگرهای تنظیم شده مایع بر اساس معادلات حرکت تلاطم ارائه میشود. برای به دست آوردن مدل خطی معادل برای نیروی ناشی از حرکت سیال، این نیرو را میتوان با دامنه و فاز مشخص نمود. در اینجا با استفاده از دو پارامتر انرژی هدر رفته در یک سیکل (E_d) میتوان برای به دست آوردن پارامترهای معادل مدل خطی استفاده نمود. در نمودار نیرو بر حسب جابجایی تکیهگاه، مخزن سیال میتواند بیانگر انرژی هدر رفته توسط تلاطم سیال باشد. این کمیت میتواند بیانگر اثر دامنه و فاز نیرو در حرکت سازه در یک سیکل حرکتی باشد. با تحریک هارمونیک پایه مخزن

آب با نسبت فرکانس eta، دامنه f_d و اختلاف فاز ϕ ، نیروی سیال را می توان به شکل بدون بعد زیر نوشت [۱].

$$\phi = \tan^{-1} \left[\frac{2\xi\beta^3}{-1 + \left(1 - 4\xi^2\right)\beta^2} \right]$$
(Y1)

$$\phi = \tan^{-1} \left[\frac{2\xi\beta^3}{-1 + \left(1 - 4\xi^2\right)\beta^2} \right]$$
(YY)

که β مطابق رابطه ۲۳ بیانگر نسبت فرکانس تحریک ($\omega_{e}^{}$) به فرکانس طبیعی (ω) است.

 $\beta = \frac{\omega_e}{\omega} \tag{(YT)}$

$$\omega = \sqrt{\frac{k}{m}} \tag{(YF)}$$

$$\xi = \frac{c}{2\sqrt{km}} \tag{Ya}$$

پارامترهای k ،m و c به ترتیب نشان دهنده جرم، سختی و میرایی معادل سیستم هستند. اتلاف انرژی بدون بعد برای سیستم از هر فرکانس تحریک به صورت زیر به دست میآید.

$$(\mathbf{\tilde{r}})$$

$$E'_{d} = 2\pi |F_{d}| \sin \varphi \qquad (\mathbf{\tilde{r}})$$

اتلاف انرژی بدون بعد سیستم (E'_w) را میتوان با استفاده از معادله زیر توصیف کرد.

$$E'_{w} = \frac{E_{w}}{\frac{1}{2}m\left(\omega A\right)^{2}} \tag{YY}$$

که m جرم سیال، ۵ فرکانس تحریک میز لرزان، A دامنه تحریک سینوسی است. مخرج رابطه بالا بیانگر حداکثر انرژی جنبشی سیال به عنوان یک جسم صلب است. انرژی هدررفته E_w را میتوان با استفاده از رابطه زیر به دست آورد.

$$E_{w} = \int_{0}^{T} f_{TLD} dx \tag{YA}$$

که dx بیانگر انتگرال گیری در طی جابجایی میز لرزان در یک سیکل با پریود T است. f_{TLD} نیز نشاندهنده نیروی ایجاد شده توسط تلاطم سیال در مخزن است. پروسه انطباق پارامترهای مدل خطی با نتایج تجربی حاصل

از مخازن مختلف برای به دست آوردن جرم، سختی و میرایی معادل انجام شده است. بررسیهای زیادی برای به دست آوردن رابطه سختی و میرایی سیستم به عنوان تابعی از ارتفاع موج، عمق آب، دامنه تحریک و اندازه مخزن انجام گرفته است. نتایج بررسیها نشان میدهد که پارامتر بدون بعد دامنه Λ تعریف شده در رابطه ۲۹، تاثیر زیادی در به دست آوردن سختی و میرایی معادل میراگر مایع دارد [۳].

$$\Lambda = \frac{A}{L} \tag{Y9}$$

که A دامنه تحریک و L طول مخزن است. با استفاده از پارامتر دامنه بدون بعد و پروسه انطباق سازی، پارامتر میرایی به صورت زیر به دست $a_{n,j}$.

$$\xi = 0.05 \ \Lambda^{0.35} \tag{(\%)}$$

$$k = \begin{cases} 1.075 \ \Lambda^{0.25} & \Lambda < 0.03 \\ 2.52 \ \Lambda^{0.25} & \Lambda > 0.03 \end{cases}$$
(71)

اتلاف انرژی E'_w با استفاده از روش حداقل مربعات به E'_w منطبق میشود. برای این انطباق از دو پارامتر استفاده می شود. پارامتر اول نسبت انتقال فرکانس r است که به صورت زیر توصیف می شود.

$$r = \frac{\omega}{\omega_{rLD}} \tag{YY}$$

که
$$arpi_{
m LTD}$$
 فرکانس طبیعی پایه برای سیال آب در یک مخزن مکعب
ستطیلی با ارتفاع ${f h}_0$ و طول ${f L}$ به صورت زیر است.

$$\omega_{TLD} = \sqrt{\frac{\pi g}{l} \tanh\left(\frac{\pi h_0}{l}\right)} \tag{WY}$$

شکل ۳. مدل ارتعاشی یک ساختمان دو طبقه همراه با میراکننده تنظیم شده مایع

پارامتر دوم نسبت سختی ۲ است که به صورت زیر تعریف می شود.

$$m_{1}(\ddot{u}_{1}+\ddot{x}_{g}) = -c_{1}(\dot{u}_{1}-\dot{x}_{g}) - k_{1}(u_{1}-x_{g}) +c_{2}(\dot{u}_{2}-\dot{u}_{1}) + k_{2}(u_{2}-u_{1})$$
(YV)

$$c_{2}(\ddot{u}_{2}+\ddot{x}_{g}) = -c_{2}(\dot{u}_{2}-\dot{u}_{1}) - k_{2}(u_{2}-u_{1}) + c(\dot{u}-\dot{u}_{2}) + k(u-u_{2})$$
(^{YA})

т

$$m(\ddot{u} + \ddot{u}_{g}) = -c(\dot{u} - \dot{u}_{2}) - k(u - u_{2})$$
(T9)

که در اینجا
$$\mathbf{u}_1$$
 و \mathbf{u}_2 بیانگر جابجایی طبقات و جاذب نسبت به
زمین است. با توجه به اینکه میزان تغییر طول فنرها و سرعت میراگرها
بر اساس جابجایی نسبی طبقات نسبت به هم بدست میآید لذا با تعریف
متغیرهای $\mathbf{x}_1 = \mathbf{u}_1 \cdot \mathbf{x}_1 = \mathbf{u}_2$ و $\mathbf{x}_2 = \mathbf{u}_2 \cdot \mathbf{u}_1$ معادلات حاکم بر سازه
به شکل معادلات ۴۰ تا ۴۲ بدست میآید.

 $\kappa = \frac{k}{k_{TLD}} \tag{(YY)}$

$$k_{TLD} = m \left(2\pi f_{TLD}\right)^2 \tag{Ta}$$

با توجه به اينكه $m_d^{=}m_w$ بنابراين

$$k = r^2 \tag{(35)}$$

برای انجام شبیهسازی هیبرید زمان–واقعی ابتدا لازم است مدل ریاضی سیستم را بدست آورد. در اینجا به عنوان نمونه یک ساختمان دو طبقه مطابق شکل ۳ در نظر گرفته شده و هدف آن است که سازه میراگر مایع که در طبقه دوم نصب شده است، به صورت واقعی در میان شبیهسازی حرکت بقیه طبقات تست شود.

$$m_1 \ddot{x}_1 + c_1 \dot{x}_1 + k_1 x_1 = F_1(t)$$
(\mathcal{F}.)

$$m_2 \ddot{x}_2 + c_2 \dot{x}_2 + k_2 x_2 = F_2(t) \tag{(41)}$$

$$m\ddot{x} + c\dot{x} + kx = F(t) \tag{(YY)}$$

در معادلات ۴۰ تا ۴۲، نیروهای \mathbf{F}_{2} ، \mathbf{F}_{1} و \mathbf{F} با استفاده از روابط ۴۳ تا ۴۵ محاسبه می شوند.

$$F_{1}(t) = -m_{1} \dot{x}_{g} + c_{2} \dot{x}_{2} + k_{2} x_{2}$$
(FT)

$$F_{2}(t) = c_{s} \dot{x}_{s} + k_{s} x_{s} + \frac{m_{2}}{m_{1}} (-c_{2} \dot{x}_{2} - k_{2} x_{2} + c_{1} \dot{x}_{1} + k_{1} x_{1})$$
 (ff)

$$F(t) = \frac{m}{m_2} (-c\dot{x} - kx + c_2 \dot{x}_2 + k_2 x_2)$$
 (42)

که در اینجا X_g بیانگر جابجایی زمین، X_1 جابجایی طبقه اول نسبت به زمین، X_2 جابجایی طبقه دوم نسبت به اول و X جابجایی جاذب نسبت به طبقه دوم است. در اینجا با توجه به اینکه سازه میراگر مایع است و طبقات اول و دوم شبیه سازی شده است، بنابراین در معادلات بدست آمده، نیروی (f(t) با تأخیر به جاذب اعمال می شود و در نتیجه باید از (F(t-t) استفاده شود. در روابط ۴۰ تا ۴۲، با توجه به اینکه جاذب به صورت واقعی در نظر گرفته می شود می توان نیروی اعمال شده به آن طبقه را با تأخیر در نظر رای شبیه سازی عددی حرکت طبقات اول و دوم لازم است جابجایی و سرعت جرم جاذب با استفاده از سنسور اندازه گیری شده و به شبیه ساز ارسال شود. برای اعمال اثر نیرو و اینرسی ناشی از طبقات اول و دوم نیز می توان از عملگر هیدرولیکی استفاده کرد.

در معادلات حاکم بر سیستم، بعضی از متغیرهای حالت سیستم ممکن است با تأخیرهای زمانی مختلف در معادلات ظاهر شوند. این تأخیرهای زمانی میتوانند در متغیرهای حالت و یا مشتق متغیرهای حالت ظاهر

شوند. اگر تأخیرهای زمانی در مشتق متغیرهای حالت ظاهر نشود، معادلات دیفرانسیل تأخیری پس مانده^۱ نامیده می شود ولی اگر تأخیرهای زمانی در مشتق متغیرهای زمانی نیز ظاهر شود، معادلات دیفرانسیل تأخیری خنثی^۲ معروف هستند. مدل فضای حالت مربوط به معادلات دیفرانسیل تأخیری پس مانده یک سیستم خطی غیر متغیر با زمان و با چندین تأخیر زمانی ثابت _i به صورت معادله ۴۶ نشان داده می شود [۳۱].

$$\dot{X}(t) = A_0 X(t) + \sum_{i=1}^{n} A_i X(t - \tau_i) + Bu$$
(49)

در اینجا X بردار متغیرهای حالت، u بردار ورودیها و n نیز بیانگر تعداد تأخیرهای زمانی مختلف موجود در سیستم است. معادله مشخصه معادله دیفرانسیل تأخیری ۴۶، با رابطه ۴۷ بدست می آید.

$$\det\left(\lambda I - A_0 - \sum_{i=1}^n A_i e^{-\tau_i \lambda}\right) = 0 \tag{(YY)}$$

مقادیر $\mathbb{C} = \lambda_i \in \mathbb{C}$ معادله ۴۷ بدست می آید، مقادیر ویژه سیستم هستند که این مقادیر می تواند برای بررسی پایداری مورد استفاده قرار گیرد. در صورتی که این مقادیر در سمت چپ صفحه مختلط قرار گیرند آنگاه سیستم پایدار خواهد بود. در شبیه سازی هیبرید ساختمان دو طبقه، برای بدست آوردن مدل فضای حالت، بردار متغیرهای حالت مطابق رابطه ۴۸ انتخاب می گردد.

$$X = \begin{bmatrix} x_1 & x_2 & x & \dot{x_1} & \dot{x_2} & \dot{x} \end{bmatrix}^T$$
(*A)

$$\dot{X}(t) = A_0 X(t) + \sum_{i=1}^{n} A_i X(t - \tau_i) + Bu$$
 (49)

¹ Retarded

² Neutral

جدول ۱. پارامترهای مورد بررسی در رفتار میراگر تنظیم شده مایع

Table 1. Parameters for investigating the behavior of a TLD

پارامتر	نشانه
نسبت جرم	μ
نسبت دامنه	Λ
نسبت فركانس	ω/ω_n
تأخير زمانى	τ

که A₀ بیانگر ضرایب فضای حالت برای متغیرهای بدون تأخیر زمانی و A₁ بیانگر ضرایب برای متغیرهای همراه با تأخیر زمانی ثابت T است. با توجه به اینکه در این سیستم فقط یک تأخیر زمانی ثابت مربوط به عملگر هیدرولیکی در نظر گرفته شده است لذا k=1 میباشد. در اینجا پارامترهای بدون بعد نیز به صورت روابط ۵۰ تعریف شده است.

$$\omega_{1} = \sqrt{\frac{k_{1}}{m_{1}}} , \quad \zeta_{1} = \frac{c_{1}}{2\sqrt{k_{1}m_{1}}}$$

$$\omega_{2} = \sqrt{\frac{k_{2}}{m_{2}}} , \quad \zeta_{2} = \frac{c_{2}}{2\sqrt{k_{2}m_{2}}} , \quad \mu_{2} = \frac{m_{2}}{m_{1}} \qquad (\Delta^{*})$$

$$\omega = \sqrt{\frac{k}{m}} , \quad \zeta = \frac{c}{2\sqrt{km}} , \quad \mu = \frac{m}{m_{2}}$$

با استفاده از پارامترهای بدون بعد، ماتریسهای \mathbf{A}_1 ، \mathbf{A}_0 و \mathbf{B} با استفاده از روابط ۵۱ تا ۵۳ بدست میآیند.

	(0	0	0	1	0	0	1
	0	0	0	0	1	0	
	0	0	0	0	0	1	(2)
$A_0 =$	$-\omega_1^2$	$\mu \omega_2^2$	0	$-2\zeta_1\omega_1$	$2\mu_2\zeta_2\omega_2$	0	(ω τ)
	ω_1^2	$-\omega_2^2(1+\mu_2)$	$\mu \omega^2$	$2\zeta_1\omega_1$	$-2\zeta_2\omega_2(1+\mu_2)$	2μζω	
	0	0	$-\omega^2$	0	0	$-2\zeta\omega$	

$$B = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \end{bmatrix}^{T}$$
 ($\Delta \Upsilon$)

با توجه به ماتریسهای
$$\mathbf{A}_0$$
 و \mathbf{A}_1 بدست آمده، معادله مشخصه حاکم
بر سیستم به صورت معادله ۵۴ خواهد بود.

$$\det\left(\lambda I - A_0 - A_1 e^{-\tau\lambda}\right) = 0 \tag{(\Delta f)}$$

که λ مقادیر ویژه سیستم است که از حل معادله جبری غیرخطی ۵۴ بدست می آیند. برای حل این معادله از ابزار BIFTOOL استفاده شده است. اگر قسمت حقیقی ریشههای معادله مشخصه منفی باشند و یا به عبارت دیگر، مقادیر ویژه سیستم در سمت چپ صفحه مختلط قرار گیرند آنگاه سیستم پایدار خواهد بود. معادله مشخصه سیستم به پارامترهای میراکننده و همچنین میزان تأخیر زمانی عملگر وابسته است. بنابراین با تغییر پارامترهای میراکننده مایع و همچنین تغییر تأخیر زمانی عملگر، مکان هندسی ریشههای معادله مشخصه در صفحه مختلط بدست می آید. محل تقاطع مکان هندسی ریشهها با محور موهومی در صفحه مختلط بیانگر مرز یایداری خواهد بود.

شکل ۴. شماتیک روش شبیهسازی هیبرید زمان- واقعی برای تست جاذب ارتعاشات

Fig. 4. Schematic of a real-time hybrid simulation for damper testing

شکل ۵. پارامترهای مؤثر در پایداری شبیهسازی هیبرید میراگر مایع

Fig. 5. Effective parameters for stability analysis of hybrid simulation for TLD

۳- نتايج

در این بخش، با استفاده از معادلات دیفرانسیل تأخیری به بررسی پایداری سیستم بر حسب تأخیر زمانی پرداخته شده و مکان هندسی ریشهها به ازای تغییر تأخیر زمانی عملگر رسم شده است. در پایان به بررسی حساسیت پایداری سیستم به ازای تغییر پارامترهای بدون بعد پرداخته شده است. برای رسیدن به یک شبیهسازی هیبرید پایدار و دقیق، لازم است درک درستی از تأثیر پارامترهای مختلف در شبیهسازی هیبرید مورد بررسی وجود داشته باشد. در این پژوهش با استفاده از معادلات دیفرانسیل تأخیری، به بررسی اثر تأخیر زمانی ناشی از عملگر هیدرولیکی در پایداری شبیهسازی هیبرید یک

ساختمان دو طبقه همراه با میراگر تنظیم شده مایع پرداخته می شود. از جمله مهمترین پارامترهای تأثیر گذار در رفتار میراگر تنظیم شده مایع در جدول ۱ ارائه شده است.

که μ نسبت جرم میراگر مایع به جرم طبقه آخر، Λ نسبت دامنه نوسانات به طول ظرف میراگر مایع (و یا طول مکعب مستطیل)، ω فرکانس میراگر مایع و τ تأخیر زمانی عملگر هیدرولیکی است. این پارامترها با توجه به شکل ۵، به صورت زیر تعریف میشوند.

$$\Lambda = \frac{A}{L} \quad , \quad \omega = \sqrt{\frac{k}{m}} \tag{(ab)}$$

 Λ =0.03 و μ =0.05 با فرض $0.7 < \tau < 0.1$ sec شکل ۶. مکان هندسی ریشهها به ازای تغییر تأخیر زمانی عملگر Fig. 6. Root locus versus time-delay of actuator using μ =0.05 and Λ =0.03 for $0 < \tau < 0.1$ sec

در شکل ۸ به ازای مقادیر مختلف نسبت جرم میراگر مایع در شکل ۸ به ازای مقادیر مختلف نسبت جرم میراگر مایع ($\mu = 0.03, 0.04, 0.05$) نمودار نسبت دامنه بر حسب تأخیر زمانی رسم شده است. همانطور که در این شکلها مشاهده میشود، محدوده مجاز تأخیر زمانی با افزایش نسبت دامنه به طور یکنواخت افزایش مییابد. مقایسه قسمتهای پایدار هاشور خورده در نمودارهای مربوط به نسبت جرمهای مختلف نیز نشان می دهد که با افزایش نسبت جرمهای مختلف نیز نشان می دهد که با افزایش نسبت جرمهای مختلف زیز نشان می دهد که خورده در نمودارهای مربوط به نسبت جرمهای مختلف نیز نشان می دهد که با افزایش نسبت جرم میراگر مایع، محدوده پایداری کاهش مییابد. در جدول ۲۰ مافزایش نسبت در میای با افزایش نسبت در میراگر مایع، محدوده پایداری کاهش می باد. در جدول ۲۰ معاز به خوبی مقدار مجاز تأخیر زمانی به ازای نسبت دامنههای $\Lambda = 0.02$ رائه شده است. در این جدول تأثیر نسبت جرم در حداکثر تأخیر زمانی میاور محاز به خوبی مشاهده می شود.

در شکل ۹، اثر نسبت فرکانس سیستم در محدوده پایداری شبیهسازی هیبرید نشان داده شده است. در نسبت دامنههای خیلی کم، محدوده مجاز نسبت فرکانس با افزایش دامنه کاهش مییابد ولی در دامنههای بزرگتر، محدوده مجاز نسبت فرکانس با افزایش دامنه افزایش مییابد. به عنوان

 Λ =0.03 و μ =0.05 شكل ۷. مكان هندسی ریشه ناپایدار به ازای تغییر تأخیر زمانی عملگر $\tau < 0.1$ sec شكل ۷. مكان هندسی ریشه ناپایدار به ازای تغییر تأخیر زمانی عملگر Fig. 7. Root locus of unstable root versus time-delay of actuator using μ =0.05 and Λ =0.03 for 0 < τ < 0.1 sec

نمونه، در حالت $0.05 = \mu$ و در بازه $0 > 0.002 > \Lambda$ ، نسبت فركانس مجاز با افزایش دامنه كاهش یافته است ولی در بازه $0.03 > \Lambda > 0.002$ ، محذوده مجاز نسبت فركانس با افزایش دامنه افزایش یافته است. مقایسه مناطق پایدار هاشور خورده به ازای نسبت جرمهای مختلف مقایسه مناطق پایدار هاشور خورده به ازای نسبت جرمهای مختلف ($\mu = 0.03, 0.04, 0.05$) ثابت $0.03 = \pi$ ، منطقه پایدار در نمودار نسبت دامنه بر حسب نسبت فركانس، با افزایش نسبت جرم كاهش می یابد. در جدول ۳، مقادیر نسبت دامنه و نسبت جرم متناظر با حداقل مقدار مجاز نسبت فركانس آورده شده است.

در شکل ۱۰، تأثیر تأخیر زمانی بر پایداری در نمودار نسبت دامنه بر حسب نسبت فرکانس مشاهده می شود. در این نمودارها، به ازای یک نسبت جرم معین µ=0.03 با تأثیر تأخیر زمانی بر پایداری در نمودار نسبت دامنه بر حسب نسبت فرکانس ارائه شده است. به ازای تأخیرهای زمانی کوچک مانند 0.03 و رد در دامنههای کوچک در بازه 0.001 ک۸ > 0، محدوده مجاز نسبت فرکانس

با افزایش دامنه کاهش مییابد ولی در نسبت دامنههای بزرگتر در بازه میابد. ولی در نسبت دامنههای بزرگتر در بازه در تأخیرهای زمانی بزرگتر مانند 0.04, 0.05 = r، محدوده مجاز نسبت فرکانس به صورت یکنواخت با افزایش دامنه کاهش مییابد. همانطور که در جدول ۴ نیز مشخص است، به ازای $0.005 = \Lambda$ ، محدوده مجاز نسبت فرکانس با افزایش تأخیر زمانی ابتدا کاهش و مجدداً افزایش یافته است و بنابراین روند یکنواختی برای محدوده مجاز نسبت فرکانس و نسبت دامنه وجود ندارد.

در شکل ۱۱، تأثیر نسبت دامنه و نسبت جرم بر تأخیر زمانی مجاز نشان داده شده است. همانطور که در نمودارها مشاهده می شود، محدوده مجاز تأخیر زمانی به طور تقریباً یکنواخت با افزایش نسبت جرم کاهش می یابد. با مقایسه مناطق پایدار هاشور خورده در نسبت دامنههای مختلف می توان نتیجه گرفت که ناحیه پایدار با افزایش نسبت دامنه توسعه می یابد. در جدول ۵، به ازای نسبت جرمهای مشخص ۵.1 (0.05 = 1، حداکثر تأخیر زمانی مجاز به ازای نسبت دامنههای مختلف ارائه شده است.

 μ شکل ۸. محدوده پایداری در صفحه (Λ , au) با ازای مقادیر مختلف

Fig. 8. Stability margin in (Λ, τ) -plane for different values of μ

جدول ۲. حداکثر مقدار مجاز تأخیر زمانی بر حسب نسبت جرم در نسبت دامنههای مختلف

Table 2. Maximum allowable time-delay versus mass	ratio for different amplitude ratios
---	--------------------------------------

$\Lambda = 0.01$		$\Lambda = 0.03$	
μ	τ	μ	τ
0.03	0.067	0.03	0.082
0.04	0.054	0.04	0.064
0.05	0.047	0.05	0.057

جدول ۳. مقادیر نسبت دامنه و نسبت جرم متناظر با حداقل مقدار مجاز نسبت فرکانس

Table 3. Amplitude and mass ratios for minimum allowable values of frequency ratios

μ	Λ	ω/ω_n
0.03	0.00068	1.074
0.04	0.00094	1.011
0.05	0.00168	0.958

جدول ۴. حداکثر مقدار مجاز نسبت فرکانس بر حسب تأخیر زمانی در نسبت دامنههای مختلف

Table 4. Maximum allowable frequency ratio versus time delay for different amplitude ratios

$\Lambda =$	0.02	$\Lambda = 0$	0.03
τ	ω/ω_n	τ	ω/ω_n
0.03	0.980	0.03	1.007
0.04	0.949	0.04	0.947
0.05	0.993	0.05	0.983

 μ شکل ۹. محدوده پایداری در صفحه (Λ , ω/ω_n) با ازای مقادیر مختلف

ig. 9. Stability margin in (A , $\omega/\omega_{_{I\!\!R}}$)-plane for different values of μ

auشکل ۱۰. محدوده پایداری در صفحه $(\Lambda \ , \ \omega / \omega_{_{
m n}})$ با ازای مقادیر مختلف

Fig. 10. Stability margin in (Λ , ω/ω_n)-plane for different values of τ

جدول ۵. حداکثر مقدار مجاز تأخیر زمانی بر حسب نسبت دامنه در نسبت جرمهای مختلف

$\mu = 0.05$		$\mu = 0.1$	
Λ	τ	Λ	τ
0.01	0.058	0.01	0.037
0.02	0.062	0.02	0.042
0.03	0.068	0.03	0.046

Table 5. Maximum allowable time-delay versus amplitude ratio for different mass ratios

جدول ۶. حداکثر مقدار مجاز تأخیر زمانی بر حسب نسبت فرکانس در نسبت جرمهای مختلف

Table 6. Maximum allowable time-delay versus frequency ratio for different mass ratios

$\mu = 0$	$\mu = 0.05$		$\mu = 0.1$	
ω/ω_n	τ	ω/ω_n	τ	
1.0	0.062	1.0	0.042	
1.4	0.064	1.4	0.046	
1.6	0.099	1.6	0.064	

۴- جمعبندی

از شبیهسازی هیبرید زمان – واقعی برای بررسی اثر زلزله بر روی سازه یک ساختمان دو طبقه به همراه میراگر مایع استفاده شده است. حرکت افقی طبقات سازه به صورت سیستم جرم – فنر – میراگر دو درجه آزادی و میراگر مایع نیز به صورت یک سیستم جرم – فنر – میراگر یک درجه آزادی در نظر گرفته شده است. میراگر مایع به صورت واقعی در کنار شبیهسازی کامپیوتری سازه دو طبقه قرار گرفته است. نیروهای بدست آمده از شبیهسازی توسط یک عملگر هیدرولیکی به میراگر اعمال شده و از طرف دیگر جابهجایی و سرعت جرم میراگر توسط سنسور اندازه گیری شده و به شبیهساز برگردانده شده است. عملگر استفاده شده در این آزمون، یک اثر دینامیکی اضافی به در شکل ۱۲، تأثیر نسبت فرکانس بر پایداری در نمودار نسبت جرم به تأخیر زمانی نشان داده شده است. همانطور که در نمودارهای مختلف نشان داده شده است، تأخیر زمانی مجاز به صورت یکنواخت با افزایش نسبت جرم کاهش مییابد. مقایسه مناطق پایدار هاشور خورده در نمودارهای ارائه شده به ازای نسبت فرکانسهای مختلف نشان میدهد که با افزایش نسبت فرکانس، منطقه پایدار ابتدا کاهش و سپس مجدداً افزایش مییابد. همانطور که در جدول ۶ نیز نشان داده شده است، در نسبت جرمهای بالا، حداکثر مقدار مجاز تأخیر زمانی با افزایش نسبت فرکانس افزایش یافته است ولی در نسبت جرمهای پایینتر، محدوده مجاز تأخیر زمانی با افزایش نسبت فرکانس ابتدا کاهش و سپس افزایش یافته است.

 Λ شکل ۱۱. محدوده پایداری در صفحه (μ , τ) با ازای مقادیر مختلف

Fig. 11. Stability margin in (μ , τ)-plane for different values of Λ

 ω/ω_n شکل ۱۲. محدوده پایداری در صفحه ((μ, τ) با ازای مقادیر مختلف

Fig. 12. Stability margin in (μ , $\tau)\text{-plane}$ for different values of $\omega/\omega_{_n}$

- [3] J.K. Yu, T. Wakahara, D.A. Reed, A non-linear numerical model of the tuned liquid damper, Earthquake engineering & structural dynamics, 28(6) (1999) 671-686.
- [4] R. Kamgar, F. Gholami, H.R. Zarif Sanayei, H. Heidarzadeh, Modified tuned liquid dampers for seismic protection of buildings considering soil–structure interaction effects, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(1) (2020) 339-354.
- [5] K. McNamara, B. Awad, M. Tait, J. Love, Incompressible smoothed particle hydrodynamics model of a rectangular tuned liquid damper containing screens, Journal of Fluids and Structures, 103 (2021) 103295.
- [6] P. Shoaei, H.T. Oromi, A combined control strategy using tuned liquid dampers to reduce displacement demands of base-isolated structures: a probabilistic approach, Frontiers of Structural and Civil Engineering, 13(4) (2019) 890-903.
- [7] Brailsford, S.C., Eldabi, T., Kunc, M., Mustafee, N. and Osorio, A.F., 2019. Hybrid simulation modelling in operational research: A state-of-the-art review. European Journal of Operational Research, 278(3), 721-737, 2019.
- [8] S. Al-Subaihawi, J.M. Ricles, S.E. Quiel, Online explicit model updating of nonlinear viscous dampers for real time hybrid simulation, Soil Dynamics and Earthquake Engineering, 154 (2022) 107108.
- [9] Z. Fei, W. Jinting, J. Feng, L. Liqiao, Control performance comparison between tuned liquid damper and tuned liquid column damper using real-time hybrid simulation, Earthquake Engineering and Engineering Vibration, 18(3) (2019) 695-701.
- [10] L. Huang, C. Chen, M. Chen, T. Guo, Effect of timevarying delay on stability of real-time hybrid simulation with multiple experimental substructures, Journal of Earthquake Engineering, 26(1) (2022) 357-382.
- [11] L. Huang, C. Chen, S. Huang, J. Wang, Stability of real-time hybrid simulation involving time-varying delay and direct integration algorithms, Journal of Vibration

سیستم اعمال کرده است. با توجه به اینکه سازه میرایی کمی دارد، تأخیر زمانی حاصل از عملگر از اهمیت زیادی برخوردار بوده و به ازای بعضی از پارامترهای سیستم، باعث ناپایداری شبیهسازی هیبرید شده است. از اثر دینامیکی مربوط به سنسورها صرفنظر شده و اثر مربوط به عملگر هیدرولیکی به صورت یک تأخیر زمانی ثابت در نظر گرفته شده است. پایداری سیستم به ازای تأخیرهای زمانی مختلف بررسی شده و تأثیر پارامترهای سازه از جمله جرم، دامنه نوسانات و فرکانس طبیعی بر محدوده پایداری بررسی شده است. برای رسیدن به یک شبیهسازی هیبرید پایدار و دقیق، لازم است درک درستی از تأثیر پارامترهای مختلف در شبیهسازی هیبرید مورد بررسی وجود است. برای رسیدن به یک شبیهسازی هیبرید پایدار و دقیق، لازم است درک زمانی ناشی از عملگر هیدرولیکی در پایداری شبیهسازی هیبرید پرداخته زمانی ناشی از عملگر هیدرولیکی در پایداری شبیهسازی هیبرید پرداخته شده است. از جمله مهمترین نتایج بدست آمده از تحلیل پایداری میتوان به موارد زیر اشاره کرد:

۱- افزایش نسبت جرم میراگر مایع، باعث کاهش محدوده پایداری در
 صفحه دامنه بر حسب تأخیر زمانی و همچنین کاهش محدوده پایداری در
 صفحه دامنه بر حسب فرکانس طبیعی می شود.

۲- افزایش تأخیر زمانی عملگر باعث افزایش محدوده فرکانس در
 دامنههای پایین و کاهش محدوده فرکانس در دامنههای بالا می شود.

۳- افزایش دامنه نوسانات، تأثیر قابل توجهی در محدوده پایداری در صفحه جرم برحسب تأخیر زمانی ندارد.

۴– افزایش فرکانس طبیعی میراگر، محدوده پایداری در صفحه جرم بر حسب تأخیر زمانی را افزایش میدهد.

بنابراین با توجه به عدم قطعیتهای موجود در مدل ریاضی، پارامترهای میراگر مایع باید به گونهای انتخاب شوند که شبیهسازی هیبرید حاشیه پایداری قابل قبولی داشته باشند.

منابع

- [1] L. Sun, Y. Fujino, B. Pacheco, P. Chaiseri, Modelling of tuned liquid damper (TLD), Journal of Wind Engineering and Industrial Aerodynamics, 43(1-3) (1992) 1883-1894..
- [2] L. Sun, Y. Fujino, P. Chaiseri, B. Pacheco, The properties of tuned liquid dampers using a TMD analogy, Earthquake engineering & structural dynamics, 24(7) (1995) 967-976.

- [21] J. Liu, S.J. Dyke, H.J. Liu, X.Y. Gao, B. Phillips, A novel integrated compensation method for actuator dynamics in real-time hybrid structural testing, Structural Control and Health Monitoring, 20(7) (2013) 1057-1080.
- [22] R. Mirza Hessabi, A. Ashasi-Sorkhabi, O. Mercan, A new tracking error-based adaptive controller for servohydraulic actuator control, Journal of Vibration and Control, 22(12) (2016) 2824-2840.
- [23] B. Wu, Z. Wang, O.S. Bursi, Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation, Earthquake Engineering & Structural Dynamics, 42(12) (2013) 1749-1765..
- [24] J. Zhao, C. French, C. Shield, T. Posbergh, Considerations for the development of real-time dynamic testing using servo-hydraulic actuation, Earthquake Engineering & Structural Dynamics, 32(11) (2003) 1773-1794.
- [25] R.Y. Jung, P. Benson Shing, Performance evaluation of a real-time pseudodynamic test system, Earthquake engineering & structural dynamics, 35(7) (2006) 789-810.
- [26] O. Mercan, J.M. Ricles, Experimental studies on real-time testing of structures with elastomeric dampers, Journal of structural engineering, 135(9) (2009) 1124-1133.
- [27] F. Zhu, J.T. Wang, F. Jin, L.Q. Lu, Y. Gui, M.X. Zhou, Real-time hybrid simulation of the size effect of tuned liquid dampers, Structural Control and Health Monitoring, 24(9) (2017) e1962.
- [28] J.T. Wang, Y. Gui, F. Zhu, F. Jin, M.X. Zhou, Realtime hybrid simulation of multi-story structures installed with tuned liquid damper, Structural Control and Health Monitoring, 23(7) (2016) 1015-1031.
- [29] F. Zhu, J.-T. Wang, F. Jin, L.-Q. Lu, Seismic performance of tuned liquid column dampers for structural control using real-time hybrid simulation, Journal of Earthquake Engineering, 20(8) (2016) 1370-1390.
- [30] M. Nasiri, A. Safi, Stability Anaysis of Real-

and Control, 28(13-14) (2022) 1818-1834.

- [12] X. Ning, Z. Wang, H. Zhou, B. Wu, Y. Ding, B. Xu, Robust actuator dynamics compensation method for realtime hybrid simulation, Mechanical Systems and Signal Processing, 131 (2019) 49-70.
- [13] T. Horiuchi, M. Inoue, T. Konno, Y. Namita, Realtime hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber, Earthquake Engineering & Structural Dynamics, 28(10) (1999) 1121-1141.
- [14] T. Horiuchi, T. Konno, A new method for compensating actuator delay in real-time hybrid experiments, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1786) (2001) 1893-1909.
- [15] J.E. Carrion, B. Spencer, Real-time hybrid testing using model-based delay compensation, in: Proceedings of the 4th International Conference on Earthquake Engineering, 2006.
- [16] X. Shao, A. Reinhorn, M. Sivaselvan, Real-time dynamic hybrid testing using force-based substructuring, in: 100th Anniversary Earthquake Conference, San Francisco, CA, 2006.
- [17] C. Chen, Development and numerical simulation of hybrid effective force testing method, Lehigh University, 2007.
- [18] R. Christenson, Y.Z. Lin, A. Emmons, B. Bass, Large-scale experimental verification of semiactive control through real-time hybrid simulation, Journal of Structural Engineering, 134(4) (2008) 522-534.
- [19] C. Chen, J.M. Ricles, Tracking error-based servohydraulic actuator adaptive compensation for realtime hybrid simulation, Journal of structural engineering, 136(4) (2010) 432-440.
- [20] C. Chen, J.M. Ricles, T. Guo, Improved adaptive inverse compensation technique for real-time hybrid simulation, Journal of Engineering Mechanics, 138(12) (2012) 1432-1446.

time pseudodynamic and hybrid pseudodynamic testing with multiple sources of delay, Earthquake engineering & structural dynamics, 37(10) (2008) 1269-1293. time Hybrid Simulation for a Multi-story Structure Considering Time-delay of Hydrolic Actuator, Amirkabir Journal of Civil Engineering, 51(3) (2019) 391-400.

[31] O. Mercan, J.M. Ricles, Stability analysis for real-

چگونه به اين مقاله ارجاع دهيم D. Jalili, M. Nasiri, M. Rezazadeh, Stability Analysis of Real-Time Hybrid Simulation with a Tuned Liquid Damper , Amirkabir J. Civil Eng., 55(5) (2023) 943-966.

DOI: 10.22060/ceej.2023.5115.7593

بی موجعه محمد ا