

Amirkabir Journal of Civil Engineering

Amirkabir J. Civil Eng., 53(11) (2022) 1077-1080 DOI: 10.22060/ceej.2021.18672.6920

3D Continuous Micro-Model Based on Multi-laminate Concept for the Nonlinear Numerical Analysis of Masonry Panels

H. Tavanaeifar* , A.H. Akhaveiss

Department of Civil Engineering, Razi University, Kermanshah, Iran.

ABSTRACT: This paper presents a continuous micro model for the prediction of the behavior of a masonry structure. A model based on multi-laminate theory is developed to model the fracture in unreinforced masonry. The main purpose of this paper is to develop a constitutive model for practical applications which has few and easily measurable parameters and is capable of reproducing advanced features of the behavior of masonry brickworks such as cohesive-frictional response (strength dependence on confinement), dilatancy, and dilatancy control with confinement, anisotropy (inherent and induced which is caused by cracking formation), hardening-softening and different levels of brittle behaviors. The yield surface used in this model consists of a generalized Mohr-Coulomb yield surface together with a cut-off tensile. This can address both pre and post-peak behaviors. The capability of this model is confirmed for simulating the masonry behavior under lateral loading by comparing the numerical simulation results with experimental data in the literature..

Review History:

Received: Jul. 03, 2020 Revised: Feb. 05, 2021 Accepted: Feb, 13, 2021 Available Online: Feb. 27, 2021

Keywords:

Micro modeling Micro-plane model Multi-laminate model Induced anisotropy Softening behavior.

1-Introduction

Generally, numerical modeling of masonry walls is classified into three main categories including micro modeling, macro modeling, and equivalent element. The two latter approaches are characterized by a very low, Nevertheless, such simplified elements usually provide a coarse description of the real masonry element behavior [1, 2]. A masonry wall is a composite material constructed of three main components: brick, mortar, and interface of brickmortar. In micro modeling, each component of the masonry wall is modeled separately. The micro-modeling strategies for masonry walls are summarized in three main groups: detailed micro-modeling, simplified micro-modeling, and continuous micro-models. The detailed micro-modeling can only be used for small specimens due to difficulties in pre and post-processing. The restriction of the simplified micromodeling is that the joint interaction with masonry units (i.e., bricks) cannot be modeled correctly due to egregious difference between mechanical properties of bricks and mortar joints causing the extension of important lateral stress of wall to the area adjacent to the joint [3, 4].

The main purpose of this paper is to develop a constitutive model based on multi-laminate theory for practical applications that is capable of reproducing advanced features of the behavior of masonry brickwork. The multi-laminate models can simulate induced anisotropy intrinsically. Also, the advantage of the continuous micro-models mainly resides in its simple and efficient format that it inherits from classical damage mechanics models. The recurrent disadvantage of standard continuum damage models, i.e., their poor capability of representing the dilatant behavior of mortar joints under shear stress states, has been overcome by the proposed model.

2- Multi-laminate Framework

According to the multi-laminate framework, the mechanical behavior of a material can be simplified by assuming the body to be a combination of solid particles and an infinite number of imaginary sliding planes which are randomly oriented in space. The overall plastic deformation of a body is then a result of plastic movement along these planes [5].

The micro-level effective stress σ'_i on each sampling plane is obtained using:

$$\sigma_i' = \left[\sigma_{ni}', \tau_i\right]^T = \begin{bmatrix} N : \sigma^{mac} \\ T : \sigma^{mac} \end{bmatrix}$$
(1)

$$N = n \otimes n, T = n I^{sym} - n \otimes n \otimes n$$
⁽²⁾

*Corresponding author's email: Hamidtavanaei@gmail.com

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

Fig. 2. Yield and failure on a sampling plane.

	E (MPa)	v	C (MPa)	ø	ψ	ft (MPa)
brick	6740	0.17	4.35	30	20	1.5
mortar	1700	0.06	0.35	40	30	0.24

Table 1. Experimental data [6] and model parameters.

Where σ' is the effective stress tensor and n_i is the normal unit vector of the plane i.

To obtain the global plastic strain increment $\Delta \varepsilon^p$, the contributions from all sampling planes have to be taken into account by the transformation of the micro-level plastic strain increment $\Delta \varepsilon_i^p$ and the numerical integration over the surface of the unit sphere:

$$\Delta \varepsilon^{p} = \int_{S} T_{i} \Delta \varepsilon_{i}^{p} dS = \int_{S} \Delta \lambda_{i} T_{i} \frac{\partial g_{i}}{\partial \sigma_{i}^{\prime}} dS = \sum_{i=1}^{np} \Delta \lambda_{i} T_{i} \frac{\partial g_{i}}{\partial \sigma_{i}^{\prime}} W_{i}$$
(3)

Where S denotes the surface of the unit sphere and T_i is the transformation matrix of the sampling plane i which contains partial derivatives of the local effective stress vector concerning the global effective stress vector.

Yield functions are denoted as f_d and f_t , called deviatoric and tension parts of the yield curve, respectively.

The yield function f_d is an extended Mohr-Coulomb criterion by introducing the mobilized friction angle ϕ'_{mob} :

$$f_d = \tau + \sigma'_n \tan \phi'_{mob} - \frac{c'_{mob} \tan \phi'_{mob}}{\tan \phi'_{peak}} = 0$$
(4)

$$\tan \phi'_{mob} = \tan \phi'_i + \left(\tan \phi'_{mod} - \tan \phi'_i\right) \cdot \frac{\varepsilon^p_{\gamma,d}}{\varepsilon^p_{\gamma,d} + A_{mat}}$$
(5)

The third part of the yield curve f_t is a function of the cut-off criterion:

$$f_t = \sigma'_n - \sigma'_t \tag{6}$$

$$\sigma'_{t} = \sigma'_{t,\max} \exp(-h_{\nu}\varepsilon_{di}) \tag{7}$$

3- Simulation of tests conducted by Page

To assess the performance of the proposed constitutive model, the experimental panel tests conducted in [6] are numerically reproduced here. The test specimen consisted of a 360×360 mm2 panel of running bond brick masonry. The tests were conducted for five different orientations, 0, 22.5, 45, 67.5, and 90. For each orientation, here only uniaxial tension is considered.

4- Results and Discussion

The directional strength characteristics obtained from numerical simulations are presented in Fig. 3 and are compared with the data of page and another numerical model [7-9]. Predominant failure modes are similar to those predicted numerically. The assessment of failure load is quite consistent with the page's results, as shown in Fig. 3(a). This can be due to that the sample is relatively small and the results are significantly affected by the constraints imposed along the boundaries.

Fig. 3. (a) Failure envelope for uniaxial tension at different orientations of the bed joints, (b, c) Crack propagation pattern within the mortar joints in specimens subjected to uniaxial tension perpendicular to the head joints, $\theta = 0$

References

- Akhaveissy, A.H., Milani, G., 2013. "Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model". Construction and Building Materials, 41. 276-295.
- [2] Lourenço, P.B., Rots, J.G., Blaauwendraad, J., 1998. "Continuum model for masonry: Parameter estimation and validation". Journal of Structural Engineering, ASCE 124(6). 642-652.
- [3] Lourenco, P.B., 1996. "Computational strategies for Masonry structures. Ph.D. thesis, The Netherlands: Delft University of Technology.
- [4] Petracca, M., Pelà, L., Rossi, R., S. Zaghi, S., Camata, G., Spacone, E., 2017. "Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls". Constr Build Mater, 149. 296–314.

- [5] Galavi, V., Schweiger, H.F., 2010. "Nonlocal Multilaminate Model for Strain Softening Analysis, Journal of Geomechanics, ASCE, 1(30). 1532-3641.
- [6] Page, A.W., 1983. "The strength of brick masonry under biaxial tension-compression". International Journal of Masonry Constructions, 3(1). 26-31.
- [7] Shieh-Beygi, B., Pietruszczak, S., 2008. "Numerical analysis of structural masonry: mesoscale approach". Computers and Structures, 86. 1958–1973.
- [8] Kawa, M., Pietruszczak, S., Shieh-Beygi, B., 2008. "Limit states for brick masonry based on homogenization approach". International Journal of Solids and Structures, 45. 998–1016.
- [9] Pelà, L., Cervera, M., Oller, S., Chiumenti, M., 2014. "A localized mapped damage model for orthotropic materials(in press)". Engineering Fracture Mechanics.

HOW TO CITE THIS ARTICLE

H. Tavanaeifar, A.H. Akhaveissy, 3D Continuous Micro-Model Based on Multi-laminate Concept for the Nonlinear Numerical Analysis of Masonry Panels, Amirkabir J. Civil Eng., 53(11) (2022) 1077-1080.

DOI: 10.22060/ceej.2021.18672.6920

This page intentionally left blank

نشريه مهندسي عمران اميركبير

نشریه مهندسی عمران امیرکبیر، دوره ۵۳، شماره ۱۱، سال ۱۴۰۰، صفحات ۴۹۶۹ تا ۴۹۸۸ DOI: 10.22060/ceej.2021.18672.6920

ریزمدل پیوسته سه بعدی بر مبنای مفهوم چندصفحه ای جهت تحلیل رفتار غیرخطی پانل بنایی

حميد توانايي فر*، اميرهوشنگ اخويسي

دانشکده فنی، دانشگاه رازی، کرمانشاه، ایران.

تاريخچه داوري: **خلاصه:** در این مقاله یک ریزمدل پیوسته سه بعدی جهت پیش بینی رفتار بنایی غیرمسلح ارائه می گردد. این مدل بر مبنای مفهوم دریافت: ۱۳۹۹/۰۴/۱۳ ريزصفحه (چندصفحه) است و براي مدل سازي شكست در سازه بنايي توسعه مي يابد. با توجه به عدم وجود يك مدل سه بعدي قوي بازنگری: ۱۳۹۹/۱۱/۱۷ و در عین حال کاربردی در این زمینه، هدف اصلی از کار حاضر ارائه یک مدل ساختاری بر مبنای تعداد پارامترهای حداقلی آزمایشگاهی پذیرش: ۱۳۹۹/۱۱/۲۵ است که به آسانی محاسبه شده (C و φ) و قادر به بازتولید رفتار سه بعدی مصالح شبهترد (مانند بنایی آجری) است. در ریزمدل پیوسته ارائه أنلاين: ١٣٩٩/١٢/٠٩ سه بعدی، مصالح بنایی (اَجر و ملات)، با المان های محیط پیوسته مدل می شوند و با توجه به عدم استفاده از المان-های درز مجزا، کلمات کلیدی: پیش پردازش (گسستهسازی)، تحلیل و پردازش نتایج، بسیار ساده تر انجام خواهد شد. سطح تسلیم استفاده شده در این مدل شامل ريزمدلسازى سطح تسلیم تعمیم یافته مور – کلمب دوبعدی همراه با یک قطع کننده کششی است. این سطح تسلیم ساده دوبعدی در چارچوب مدل چندصفحه ای مفهوم چندصفحهای، قادر به بازتولید رفتار سه بعدی مصالح ترد است و ویژگی هایی مانند وابستگی مقاومت به محصورشدگی، رفتار غيرخطى اتساع و کنترل اتساع با محصورشدگی، ناهمسانی (ذاتی و تحمیلی در نتیجه تشکیل ترک)، سخت شوندگی و نرم شوندگی در مراحل ناهمسانى تحميلي مختلف (رفتار قبل و پس از نقطه اوج)، را لحاظ مي كند. جهت نمايش توانايي اين مدل، دو ريزاَزمايش (اَزمايش كشش مستقيم نمونه رفتار نرم شونده بتنی و برش مستقیم دو آجره) و یک پانل بنایی (آزمایش پیج) تحت بارگذاری کشش تکمحوری با زوایای مختلف نسبت به درز ریزآزمایش های بنایی ملات، انتخاب شده است. مقایسه نمودار بار-تغییرمکان و مودهای گسیختگی حاصل از شبیهسازی به وسیله مدل حاضر، با داده های آزمایشگاهی و سایر مدل های عددی ارائه شده در منابع معتبر، عملکرد مدل را تأیید می کند.

۱ – مقدمه

ساختمانهای بنایی یکی از قدیمیترین سیستمهای سازهای هستند که از گذشته های دور تاکنون رایج بوده اند. اولین گام در ارزیابی لرزهای ساختمانها و نیز ارزیابی طرح تقویت موردِ نظر، مدلسازی ساختمانها میباشد. مدلسازی عددیِ دیوارهای آجری در چارچوب روشهای مقاومت، به طور کلی به سه دسته المانهای درشت یا المانهای معادل^۱، درشتمدلسازی^۲ و ریزمدلسازی^۳ تقسیم می شوند. ساده ترین روش برای مدلسازی ساختمان بنایی، برمبنای مدلسازی به وسیله ترکیبی از المانهای سازهای قرار دارد مانند المان خرپا، تیر، صفحه

(Creative Commons License) حقوق مؤلفین به نویسندگان و حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) ه کار در دسترس شما قرار گرفته است. برای جزئیات این لیسانس، از آدرس https://www.creativecommons.org/licenses/by-nc/4.0/legalcode در دسترس شما قرار گرفته است. این مقاله تحت این مقاله تحت این مقاله تحت لیسانس آفرینندگی مردمی (https://www.creativecommons.org/licenses/by-nc/4.0/legalcode در مانید.

یا المانهای پوستهای. برتری اصلیِ این روش در زمان و هزینه بسیار کم در مرحله مدلسازی (به دلیل نیاز به تعداد محدودی از پارامترها که با آزمایشهای متعارف قابل حصول است) و تحلیل (به این دلیل که هر المان درشت نماینده یک دیوار کامل یا یک پانل بنایی است، و در نتیجه به میزان قابل توجهی تعداد درجات آزادی کاهش می یابد) است و عیب عمده آن این است که توصیفی کلی (بدون جزئیاتی مانند مودهای گسیختگی و غیره) از بنایی ارائه می دهد [۱–۳].

در درشت مدلسازی، دیوار آجری به صورت یک ماده هموژن و یکدست، با خواص مکانیکی معادل فرض می شود. مدلسازی در این روش ساده بوده و حجم محاسبات نیز بسیار کمتر از ریزمدلسازی می باشد. در این مدلسازی هدف، محاسبه رفتار یک سلول واحد عمومی، به وسیله استخراج یک ضابطه ساختاری مستقیم بین حالتهای تنش و کرنش متوسط است. چنین ضابطه ای را می توان به سه طریق به دست آورد، الف) به

l Macro Element

² Macro Modeling 3 Micro Modeling

Micro Modeling

^{*} نویسنده عهدهدار مکاتبات: hamidtavanaei@gmail.com

Fig. 1. Masonry failure mechanisms: (a) joint tensile cracking; (b) joint slipping; (c) unit direct tensile cracking; (d) unit diagonal tensile cracking; (e) masonry crushing.

وسیله تکنیکهای همگن سازی [۴, ۵]، ب) با استفاده از آزمایشهای اعمالی بر صفحه های بنایی به منظور تأمین پارامترهای رفتار اُرتوتروپ [۶] و ج) استفاده از مدلهایی که قادرند رفتار ارتوتروپ را بدون نیاز به پارامترهای اضافی مدل کنند [۷–۹].

اما بنایی آجری مصالحی است که شامل سه جزء اصلی (آجر، ملات و اتصال ملات–آجر) می باشد. هدف اصلی ریزمدلسازی عبارت از ارائه دقیق رفتار بنایی با استفاده از دانش مربوط به خواص اجزا (آجر و ملات) و اتصال بین آن دو است. این مدلها قادرند مودهای گسیختگی مختلف را پیشبینی کنند (شکل ۱). این مدلها قابلیت اعمالِ اثر بافت دیوار (راسته چینی،کله راسته، انباشته و غیره) را دارند. این روش خود به سه دسته ریز مدلسازی پرجزئیات، ساده شده و پیوسته تقسیم می شود.

در ریزمدلسازی پرجزئیات^۱ مدلسازی هرآجر، ملات و اتصال ملات – آجر بطور جداگانه صورت می گیرد. در این روش هر مؤلفه را همراه با رفتار غیرخطی مختص خود و اتصال بین آجر و ملات (با استفاده از درز ویژه^۲ یا المانهای تماسی^۳)، در نظر می گیرند (شکل ۲–الف) [۱۰, ۱۱].

در ریزمدلسازی ساده شده^۶ آجرها و درز مابین (المان متمرکز= ملات +اتصال) بصورت جداگانه مدل می گردد (شکل ۲-ج). چون رفتار واقعی اتصال آجر – ملات اغلب شناخته شده نیست، المانهای اتصال گسسته^۵ با ضخامت صفر همراه با خواص پخش شده² را می توان استفاده کرد، بطوری که المانهای ملات نیاز به مدل شدن ندارند. برای تأمین ابعاد هندسی مشابه با واقعیت، ابعاد آجرها را باید بزرگتر در نظر گرفت، که موجب افزایش سختی شده و دقت مدل را کاهش میدهد. لورنکو^۷ [۱۲] یک مدل دوبعدی ارائه کرد که قادر بود رفتار سازه بنایی را تحت وضعیت الاستیک خطی، کاملاً ترک خورده و کاهش مقاومت تا لحظه گسیختگی، پیشبینی کند. مزیت اصلی این روش عبارت است از مدلسازی ترک بصورت یک ناپیوستگی واقعی بین اجزا و نه بصورت یک اصلاح در ویژگی مصالح.

در مرجع [۱۴] این مدل برای بارهای تناوبی ارتقاء یافت. همچنین اخویسی یک مدل اتصال دوبعدی را برای مدلسازی رفتار اتصال ملات بنایی ارائه کرد. در این مدل از معیار گسیختگی مور-کلمب و جهت سادگی و عدم نیاز به پارامترهای اضافی، از کپ کششی و فشاری خطی استفاده

¹ Detailed Micro Modeling

² Special Joint

³ Contact Element

⁴ Simplified Micro Modeling

⁵ Discrete Joint

⁶ Smeared

⁷ Lourenco

(۱۱] شکل ۲. استراتژیهای ریزمدلسازی بنایی؛ الف-نمونه بنایی، ب-ریز مدل پرجزئیات، ج-ریز مدل ساده شده و د-ریزمدل پیوسته Fig. 2. Modelling strategies for masonry structures: (a) masonry sample, (b) detailed micro-modelling, (c) simplified micro-modelling , (d) continuous micro-modelling

گردید [۱۵].

ریزمدلسازی پیوسته': در این مدل بر خلاف دو روش قبلی از المان اتصال استفاده نمی گردد و در مقابل از گسسته سازی پیوسته برای همه اجزای بنایی استفاده می شود. هر سه تکنیک ریزمدلسازی، قادرند مکانیسمهای گسیختگی اصلی مصالح (مانند ترک کششی، لغزش برشی و خردشدگی) را بازتولید کنند، هر کدام از روشهای انتخاب شده تقریبهای متفاوتی را ارائه می کنند که منجر به تفاوتهای جزیی در دقت، قدرت و هزینه محاسباتی می شود (شکل ۲–د).

محدودیت اساسی دو روش قبلیِ ریزمدلسازی، این حقیقت است که اندرکنش درزها با واحدهای بنایی (آجر) را نمی توان بطور صحیح در نظر گرفت [۱۶]، در حقیقت بخاطر تفاوتهای فاحش بین خواص مکانیکی آجرها و درزهای ملات، تنشهای جانبی مهم دیوار در نواحی مجاور به اتصالات توسعه مییابد که نمیتوان آن را در این فرمولبندی توصیف کرد. این روش همچنین مشکلاتی در اعمال اثرهای خارج از صفحه دارد که می تواند در بارگذاری فشاری دو محوری بسیار مهم باشد.

مزیت قابل ذکر دیگر روش ریزمدل پیوسته، عبارت از سادگی تولید

مدل المان محدود (پیش پردازش) و سادگی تفسیر نتایج پس از تحلیل است. به علاوه، پیشبینی دقیق مقاومت بنایی موجب کاهش هزینه و زمان تستهای آزمایشگاهی شده و به وسیله آن میتوان از فرمولهای تجربی محافظه کارانه اجتناب نمود. در مرجع [۱۷] یک ریزمدل پیوسته ارائه گردیده که قادر به تخمین رفتار بنایی آجری با دقت قابل قبولی است؛ ولی برای کاهش پیچیدگی مدل، هم از نظر تعداد پارامترهای مورد نیاز و هم رهایی از پیچیدگی مدلهای رفتاری سه بعدی، تنها رفتار دو بعدی بنایی آجری مدلسازی شده است. جهت بررسی رفتار سه بعدی، سرهوسیس و همکاران از المانهای گسسته استفاده کردند و نتایج در مقایسه با ریزآزمایش های بنایی مناسب بوده و قادر به تشخیص مسیر ترک بدون نیاز به اصلاح خواص مصالح است [۱۸]. هر چند این نوع مدلهای سه بعدی، دقت خوبی در مقایسه با نتایج آزمایشگاهی دارند، ولی تعداد درجات آزادی بسیار زیاد بوده و در نتیجه زمان مدلسازی، محاسبات و پردازش داده ها به شدت افزایش می یابد. با توجه به نواقص ریزمدلهای پرجزئیات و ساده شده (از نظر دشواری مدلسازی، تعداد زیاد درجات آزادی و توسعه ناهمگون تنش در محل المان درز اتصال ملات و آجر) و نیز نواقص مدلهای دوبعدی (عدم لحاظ رفتار سه محوری ملات و آجر)، نیاز به یک مدل سه بعدی قوی و در عین حال ساده،

¹ Continuos Micro Model

ضروری به نظر میرسد.

در جهت پاسخ به این نیاز، مقاله حاضر یک ریزمدل پیوسته سه بُعدی بر اساس مدل چندصفحه ای ارائه می کند. اندام [۱۹] و همچنین الداخنی و همکارانش [۲۰] با استفاده از مفهوم چندصفحه ای، رفتار بنایی آجری را مدلسازی کردند. اندام از ضابطه گسیختگی مور-کلمب، و تئوری یک صفحه ضعیف که در سنگهای ناهمسان ارائه شده [۲۱]، به منظور مدل سازی بنایی آجری مسلح استفاده کرد. در این مدل فقط مود گسیختگی لغزش درز ملات در نظر گرفته شده، ولی مدل پیشنهادی در مقابل نتایج آزمایشگاهی بررسی نشده است [۱۹]. الداخنی و همکاران از ایده چندصفحه ای به منظور ارائه یک درشت المان برای مدلسازی بنایی با بلوک مسلح و غیرمسلح استفاده کردند، در این شیوه، دیوار بنایی به وسیله یک مصالح معادل همگن شامل دو مجموعه از صفحات ضعیف در امتداد درزهای افقی و قائم مدل می گردد. برای محاسبه رفتار کلی مدل، اثر این صفحات ضعیف پخش شده است. این روش مدلسازی قادر است شروع و توسعه مودهای گسیختگی مختلف و اینکه مودهای گسیختگی متفاوت در امتداد درز ملات است یا خیر را پیشبینی کند. هر چند نتایج نسبتاً مناسبی در فضای دوبعدی حاصل شد، اما در عمل نیازمند تعداد زیادی پارامتر است [۲۰]. بورینو و همکاران از مدل ریزصفحه دوبعدی، جهت مدلسازی دیوار بنایی استفاده کردند، در این مدل از روشی که توسط آقای بازانت و پرات [۲۲]، جهت مدلسازی رفتار مصالح شبه ترد ارائه شده، استفاده می گردد، بورینو و همکاران، تنها به مقایسه نمودار بار-تغییرمکان سه دیوار با ارتفاع یکسان و طول های مختلف اکتفا نموده و توضیحی راجع به مودهای گسیختگی ارائه نکرده اند [۲۳].

بررسی های نویسندگان نشان می دهد که مدل چندصفحه سه بعدی جهت بررسی رفتار پانل بنایی تاکنون مورد توجه قرار نگرفته است. استفاده از مدل چندصفحه سه بُعدی جهت بررسی رفتار پانل بنایی، از یک طرف نواقص مربوط به مدلهای دوبعدی را برطرف می کند و از طرفی با توجه به توانایی این مدل در لحاظ کردن رفتار ناهمسان تحمیلی ماده (پس از تسلیم) به صورت ذاتی (بدون نیاز به پارامتر اضافی) و ارائه مدل ساختاری در صفحه و نه در فضا از پیچیدگیهای بیش از حدِ مدلهای ساختاری ارائه شده در فضا می کاهد. همچنین پیوسته بودن ریزمدل سبب سادگی و کارایی آن (به سبب استفاده از مدلهای کلاسیک پلاستیسیته) می شود، جایی که ارزیابی صریحِ متغیرهای داخلی مانع از روش حلقه های تکرار می شود. در نتیجه عملکرد و توان محاسباتی افزایش می یابد [۱۷].

۲- اصول چارچوب ریزصفحه (چندصفحه ای)

در دهه های اخیر تعداد زیادی از مدلهای ساختاری بر مبنای مفهوم تجزیه زاویه ای فضا توسعه یافته است. دو نوع مهم از این نوع مدلها عبارتند از تئوریهای ریزصفحه و چندصفحه ای که در اولی قیدِ حرکتی (کرنش در مقیاس درشت به مقیاس ریز تصویر می شود تا تنشهای ریزصفحه محاسبه گردد) و در دومی قیدِ استاتیکی (تنش در مقیاس درشت به مقیاس ریز تصویر می شود تا کرنشهای خمیری محاسبه گردد) لحاظ می شود. بطورکلی، چارچوب چندصفحه ای و ریزصفحه عبارت از یک رابطه ساده بین رفتار مکانیکی ماده در ریزمقیاس و درشتمقیاس است. چارچوب چندصفحه ای برمبنای تئوری لغزش بوده که در سال ۱۹۳۸ برای مدل سازی رفتار پلاستیک فلزات، پیشنهاد گردید [۲۴].

در این چارچوب رفتار کلی یک ماده، از خواص ماده روی سطوح لغزش بدست می آید. در مرجع [۲۱] از این چارچوب برای مدلسازی سنگهای درزه دار استفاده می گردد. مدلسازی مزبور بر این فرض استوار است که ناهمسانی مشخص شده در سنگ را بتوان با تعداد محدودی از صفحات ضعیف، توصیف کرد. مرجع [۲۵]، این مفهوم را برای مدلسازی رفتار مکانیکی خاک توسعه می دهد. در کل، مدلهای ریزصفحه و چندصفحه به دو صورت فرمولبندی می شوند، یکی با استفاده از تعریف نواحی حدی تنش و کرنش شبیه مدل MY بازانت و همکاران [۲۶] و دیگری استفاده تئوری خمیری در قالب ریزصفحه [۲۷]. اولی به دلیل تعداد زیاد پارامترهای ثابت و متغیر که تنها برای بتن پس از سالهای طولانی با آزمون و صحتسنجی مشخص شده و در نتیجه برای مصالح بنایی با گستردگی و تنوع مصالح اگر نگوییم غیرممکن باید گفت بسیار دشوار است. در نتیجه روش دوم در این مقاله دنبال می شود. مهم ترین اختلاف مدلهای ریز صفحه با قید حرکتی و قید استاتیکی (چندصفحه ای) در این است که در ریز صفحه با قيد حركتي بطور متوالى ريزصفحه ها وارد فاز پلاستيك مي شوند تا نهايتا همه ریزصفحهها تحت جریان پلاستیک قرار می گیرد؛ در حالی که در ریزصفحه با قید استاتیکی (چندصفحه ای) جریان پلاستیک روی یک یا تعداد كمى از صفحات متمركز مى شود و ساير صفحات الاستيك باقى مى ماند. بنابراین در مدل چندصفحه ای نیاز است که یک قانون سخت شونده و یک تابع پتانسیل پلاستیک با کنترل اتساع معرفی گردد؛ در حالی که در ريزصفحه سخت شوندگی و اتساع بصورت طبيعی اتفاق می افتد. در نتيجه، در ریزصفحه شکل صفحات تسلیم بایستی بصورت تابعی از جهت، نسبت

شکل ۳. ایده آلسازی مکانیسم ریزساختار به وسیله صفحات نمونه در اثر بارگذاری [۲۹]

Fig. 3 . Illustration of the idealized microstructure with system of assumed multilaminate and the load transfer mechanisms under loading

به تنش اصلی درشت مقیاس کنترل گردد و همین اتفاق این مدل را پیچیده می کند [۲۸]. لذا با توجه به هدف اصلی از این تئوری که ساده کردن روابط و کنترلهاست، در ادامه این مقاله ریزصفحه با قید استاتیکی یا چندصفحه ای دنبال می گردد.

بر طبق چارچوب چندصفحه ای، میتوان رفتار مکانیکی ماده را با تعداد نامحدودی از صفحات لغزش خیالی، که به طور تصادفی در فضا جهتدار شدهاند، جایگزین کرد. در نتیجه تغییرشکل پلاستیک جسم عبارت از حرکت پلاستیک در امتداد این صفحات میباشد. تنشهای بین ذرات را میتوان تنش روی این صفحات و تغییرشکل پلاستیک ماده را به صورت لغزش پلاستیک ذرات در امتداد این صفحات فرض نمود. بنابراین کل تغییر شکل ماده برابر با ذرات در امتداد این صفحات فرض نمود. بنابراین کل تغییر شکل ماده برابر با تغییرشکل الاستیک ذرات جامد و تغییرشکل پلاستیک حاصل از تغییرشکل روی صفحات مزبور میباشد. از آنجا که در نظر گرفتن تعداد نامحدودی از صفحات لغزش غیرممکن است، از این رو تعدادی صفحه محدود و یک ضریب وزنی مربوطه، انتخاب می شود (شکل ۳). صفحات انتخاب شده را صفحات نمونه، تماس یا انتگرال می نامند.

انتگرال عددی از تابع پیوسته f(x,y,z) روی سطح کره، به صورت جمع مقادیر f در نقاط نمونه که در ضرایب وزنه مربوط با این نقاط ضرب میشوند، بدست می آید. رابطه زیر ارتباط بین انتگرال عددی وانتگرال عادی را در یک نقطه گوس نشان می دهد:

$$\int_{S} f(X,Y,Z) = \sum_{i=1}^{n_{p}} w_{i} f_{i}(X_{i},Y_{i},Z_{i})$$

$$(1)$$

در این رابطه، S سطح کره واحد، n_p تعداد نقاط نمونه، W_i ضریب وزنی نقطه i، i مقدارتابع f درنقطه i است. دقت مدل، وابسته به تعداد، جهت و توزیع صفحات نمونه استفاده شده می باشد. در مدلهای ساختاری همانند مدل چندصفحه ای، توابع پتانسیل و تسلیم بطور مستقل برای هر صفحه نمونه در نظر گرفته می شود. بنابراین کرنشهای پلاستیک روی هر صفحه به طور مستقل روی صفحه گسترش می یابد. از این رو در فرآیند بارگذاری، برخی از سطوح تسلیم فعال شده و برخی دیگر دست نخورده باقی می مانند. بنابراین مدل چندصفحه ای قادر است به طور ذاتی یعنی بدون نیاز به پارامترهای اضافی، ناهمسانی تحمیلی را محاسبه کند، این ناهمسانی در نتیجه تشکیل ترکهای عمود بر جهت تنشِ کششی اصلی به وجود میآید. تنش در سطح ریزمقیاس (تنشهای نرمال و مماسی بر روی یک صفحه نظر به دست می آید (شکل ۴).

تابع تسلیم برای أامین صفحه نمونه را می وان به صورت تابعی از تنش در سطح ریز σ_i' و مجموعهای از پارامترهای مقاومتی x_i نوشت:

$$f_i = f_i(\sigma'_i, \chi_i) \tag{7}$$

شکل ۴. روند بررسی رفتار هر المان؛ الف) نمایش صفحات نمونه دریک نقطه انتگرال گیری حول محورعمومی [۳۰]، ب) انتقال تنش کلی {ه} در نقطه انتگرال گیری به تنشهای محلی {عالی { ۲} و { ۲} روی یک صفحه نمونه

Fig. 4. (a) Transformation of global stress in integration point into local stresses and on a sampling plane and (b) sampling planes in integration point distributed about common axis.

$$\Delta \varepsilon_i^p = \Delta \lambda_i \left(\partial g_i / \partial \sigma_i \right) \tag{a}$$

در این رابطه، $\lambda \lambda_i$ نمو ضریب پلاستیک در سطح میکرو و \mathbf{g}_i تابع پتانسیل پلاستیک در سطح میکرو است. سپس تغییرشکل ماده برابر با حاصل جمع تغییرشکل های الاستیک و پلاستیک است. بنابراین، نمو کرنش کل $\Delta \varepsilon^p$ شامل نمو کرنش الاستیک $^{g}\Delta \rho$ و نمو کرنش پلاستیک روی صفحات خواهد بود. باید توجه داشت که فقط کرنشهای پلاستیک روی صفحات نمونه محاسبه میشوند (سطح میکرو) و کرنشهای الاستیک در سطح ماکرو محاسبه می گردند. همچنین نمو کرنش پلاستیک $^{q}\Delta \delta$ فقط برای صفحات in مونه فعال یعنی صفحات نمونه ای که تابع تسلیم برابر صفر است ($\mathbf{f}_i = \mathbf{0}$), محاسبه می گردد. تمام محاسبات ارائه شده در این مطالعه بر مبنای ۲۳۳

$$\boldsymbol{\sigma}_{i}^{\prime} = \begin{bmatrix} \boldsymbol{\sigma}_{ni}^{\prime}, \boldsymbol{\tau}_{i} \end{bmatrix}^{T} = \begin{bmatrix} N : \boldsymbol{\sigma}^{mac} \\ T : \boldsymbol{\sigma}^{mac} \end{bmatrix}$$
(7)

$$N = n \otimes n, T = n I^{sym} - n \otimes n \otimes n \tag{(f)}$$

که σ^{mac} تانسور تنش ماکروسکوپیک تصویر شده روی یک ریزصفحه با بردار نرمال n و I^{sym} قسمت متقارن تانسور مشخصه مرتبه چهار می باشد. بر اساس تئوری پلاستیسیته، نموهای کرنش پلاستیک متناسب با مشتق تابع پتانسیل پلاستیک (یا تابع تسلیم در حالت جریان وابسته) نسبت به تنش هستند. نمو کرنش پلاستیک $\Delta \varepsilon_i^p$ مربوط به آامین صفحه نمونه به صورت زیر داده می شود:

شکل ۵. الف– منحنی تسلیم و ضابطه گسیختگی روی صفحه نمونه؛ ب– زاویه اتساع به صورت بالا رفتن واحدهای مجاور تحت اثر برش [۱۳].

Fig. 5. a) Yield curve and failure criterion on a sampling plane, b) dilatancy angle as the uplift of neighboring units upon shearing.

$$\tan \varphi_{mob}' = \tan \varphi_i' + \left(\tan \varphi_{mod}' - \tan \varphi_i' \right) \frac{\varepsilon_{\gamma,d}^p}{\varepsilon_{\gamma,d}^p + A_{mat}} \tag{A}$$

$$R_f = \frac{\tan \varphi'_{peak}}{\tan \varphi'_{mod}} \tag{9}$$

که φ'_{peak} , φ'_{i} و p'_{mod} به ترتیب زوایای اصطکاک مؤثر اولیه، نهایی و اصلاح شده هستند، A_{mat} پارامتری است که نرخ سختشوندگی انحرافی را کنترل می کند. شایان توجه است مقادیر بزرگتر A_{mat} موجب انتقال کندتر زاویه اصطکاک با کرنش های برشی پلاستیک بزرگتر می شود. نسبت گسیختگی که به طور معمول برابر با ۲۹٬۵۰ در نظر گرفته می شود. انتقال زاویه اصطکاک به وسیله کرنش برشی پلاستیک بر مبنای قسمت انحرافی از زاویه اصطکاک به وسیله کرنش برشی پلاستیک بر مبنای قسمت انحرافی از غلیه تسیح کندرل می گردد ($p_{\gamma,d}^{P}$). جریان پلاستیک به وسیله تابع پتانسیل غیروابسته کنترل می گردد (عنی زاویه اصطکاک متغییر ϕ'_{mod} با زاویه اتساع متغییر می گردد ($p_{\gamma,d}^{P}$).

$$g_d = \tau + \sigma'_n \tan \psi'_{mob} = 0 \tag{(v)}$$

در این رابطه ψ'_{mob} زاویه اتساع می باشد که تغییرات حجم، ناشی از اعوجاج برشی در یک المان از مصالح (و در بنایی آجری مقدار بلندشدگی در اثر جابهجایی برشی) را مشخص می کند (شکل ۵–ب). در واقع این صفحه نمونه متقارن است، این تعداد به منظور ایجاد تعادلی بین تلاش محاسباتی و دقت محاسبات اختیار شده است [۳۱].

برای بدست آوردن نمو کرنش پلاستیک ماکروسکوپیک $\Delta \mathcal{E}^{p}$ ، سهم همه صفحات نمونه را بایستی به وسیله انتقال نمو کرنش پلاستیک درسطح ممه صفحات نمونه را بایستی به وسیله انتقال مو کرد $\Delta \mathcal{E}^{p}_{i}$ و انتگرال عددی روی سطح کره واحد محاسبه کرد [۳۳, ۳۳]:

$$\Delta \varepsilon^{p} = \int_{S} T_{i} \Delta \varepsilon_{i}^{p} dS = \int_{S} \Delta \lambda_{i} T_{i} \frac{\partial g_{i}}{\partial \sigma_{i}'} dS = \sum_{i=1}^{np} \Delta \lambda_{i} T_{i} \frac{\partial g_{i}}{\partial \sigma_{i}'} W_{i}$$
^(F)

ماتریس انتقال صفحه نمونه i را معرفی می کنند. تابع تسلیم استفاده T_i شده شامل دو تابع مستقل $(f_t \ f_d)$ از مؤلفه های تنش مؤثر یعنی به ترتیب قسمتهای انحرافی و کششی از منحنی پوش است (شکل ۵–الف) [۳۲].

تابع تسلیم انحرافی \mathbf{f}_{d} تعمیمی از ضابطه مور-کلمب [۳۲] است که یک زاویه اصطکاک انتقالی را بکار می گیرد ($arphi'_{mob}$):

$$f_{d} = \tau + \sigma'_{n} \tan \varphi'_{mob} - \frac{c'_{mob} \tan \varphi'_{mob}}{\tan \varphi'_{peak}} = 0 \qquad (Y)$$

شکل ۶. تغییرات زاویه اتساع بسیج شده با توان P Fig. 6. Mobilization of dilation angle with variation of power index P

پدیده، اثر زبری سطح است که به این صورت نمایان می شود. بایستی توجه شود که زاویه اتساع، وابسته به سطح تنش محصورکننده است، برای فشار مود که زاویه اتساع، وابسته به سطح تنش محصورکننده است، برای فشار محصورکننده کم، مقدار متوسط Ψ *tan* Ψ بسته به زبری^۲ صفحه واحد در *tan* Ψ محصورکننده کم، مقدار متوسط Ψ *tan* Ψ بسته به زبری^۲ صفحه واحد در نازه ۲/۰ تا ۲/۰ قرار می گیرد. برای فشارهای محصورکننده زیاد، Ψ می یابد V تا محفر کاهش می یابد که دلیل آن هموار^۲ بودن صفحات برش خورده است. نتایج آزمایشگاهی یابد که دلیل آن هموار^۲ بودن صفحات برش خورده است. نتایج آزمایشگاهی یک نمودار نرمشوندگی برشی نمایی را همراه با یک سطح اصطکاک خشک رفتار پلاستیک کافی نیست. همچنین با شروع به لغزش، به علت صاف شدن رفتار پلاستیک کافی نیست. همچنین با شروع به لغزش، به علت صاف شدن سلوح، زاویه اتساع به صفر میل می کند. راو [۳۴]، رابطه (۱۱) را برای شبیه سازی رفتار اتساعی مصالح ژئوتکنیکی ارائه داد. این معادله رابطه بین زاویه اتساع بسیج شده ϕ_{mob} تابعی از کرنش برشی پلاستیک $\varepsilon_{\gamma,d}^{q}$ را در حالی که رزاویه اصطکاک بسیج شده می باشد، بیان می کند. راه را می معادله رابطه بین زاویه می ای بیش بینی معادلک بسیج شده مصالح ژئوتکنیکی ارائه داد. این معادله رابطه بین زاویه می باشد، بیان می کند. محضو میل می کند. راه را تا می معادله رابطه بین زاویه اسازی رفتار اتساعی مصالح ژئوتکنیکی ارائه داد. این معادله رابطه بین زاویه می باشد، بیان می کند. موسطح ای کرنش برشی پلاستیک مربی کار مرابع می کند.

$$\sin\psi_{mob} = \frac{\sin\varphi_{mob} - \sin\varphi_{cv}}{(1 - \sin\varphi_{mob} \cdot \sin\varphi_{cv})} \tag{11}$$

1 Roughness

2 Smoothing

$$\sin \varphi_{cv} = \frac{\sin \varphi_{peak} - \sin \psi}{(1 - \sin \varphi_{peak} \cdot \sin \psi)}$$
(17)

زاویه اتساع بسیج شده ψ_{mob} در ابتدا به دلیل انقباض ناشی از وجود ترکهای قبل از بارگذاری، منفی است و با افزایش زاویه اصطکاک بسیج $\mathcal{E}^{p}_{\gamma,d}$ مشده مؤثر برشی پلاستیک $\mathcal{E}^{p}_{\gamma,d}$ فنده موثر برشی پلاستیک افزایش مشده و زاویه اتساع افزایش می یابد و سپس در کرنش مشخصی، حجم ثابت شده و زاویه اتساع صفر می گردد. این نقطه را با φ_{cv} که یک مقدار ثابت است نشان می دهند و به آن "زاویه اصطکاک حجم ثابت" می گویند که متناظر با شرایط تغییر شکل به آن "زاویه اصطکاک حجم ثابت می دهند و به آن "زاویه اصطکاک حجم ثابت" می گویند که متناظر با شرایط تغییر شکل به آن "زاویه اصطکاک حجم ثابت" می گویند که متناظر با شرایط تغییر شکل می درم شرقف شده و اتساع آغاز می گردد، مشخص می کند.

رابطه برای ماسه بطور دقیقی اثبات شده، اما با توجه به فرضیات محدودکننده موجود در نظریه اتساعی راو و همچنین شبیهسازی عددی نتایج آزمایشگاهیِ حجمیِ بناییِ پلاستیک موجود در این پژوهش، مشخص می شود که تابع راو، دارای دقت کافی در شبیهسازی رفتار حجمی مصالح دانه ای سیمانته شده نمی باشد. لذا رابطه (۱۱) بصورت زیر اصلاح می گردد (شکل ۶).

$$\sin\psi_{mob} = \frac{\sin\varphi_{mob} - \sin\varphi_{cv}}{(1 - \sin\varphi_{mob} \cdot \sin\varphi_{cv})} (\frac{\sin\varphi_{mob}}{\sin\varphi_{peak}})^p \quad (1\%)$$

Fig. 7. Softening curve for masonry material

$$\varepsilon_{di} = (1 - A_d) \varepsilon_{n,i}^p + A_d \varepsilon_{\gamma,i}^p \tag{10}$$

A_d پارامتر مقیاس بدون بعد برای کنترل سهم نسبی از افت انحرافی و حجمی است. می توان دید که برای $A_{d}=0$ کرنش خرابی کاملاً حجمی است؛ در حالی که برای $A_{d} = 1$ این کرنش کاملاً انحرافی می باشد. از این رو نرم شوندگی و خرابی تابعی از هردوی کرنشهای حجمی و انحرافی هستند. $\mathcal{E}_{n,i}^{p}$ و $\mathcal{E}_{r,i}^{p}$ حاصل جمع قدرمطلق مقادیر همه کرنشهای پلاستیک روی هرصفحه نمونه بدست آمده از قسمتهای انحرافی و کششی تابع تسليم هستند [٣٢].

$$\mathcal{E}_{n,i}^{p} = \left| \mathcal{E}_{n,d}^{p} \right| + \left| \mathcal{E}_{n,t}^{p} \right| \tag{19}$$

قسمت دوم منحنی تسلیم
$${f}_t$$
 بصورت یک ضابطه قطع کننده کششی
است:

$$f_t = \sigma'_n - \sigma'_t \tag{14}$$

براي ضابطه كششي جريان يلاستيک كاملاً وابسته فرض شده است.

در کار حاضر پارامترهای مجهول به وسیله تساوی سطح زیر نمودار تنش-کرنش در یک نقطه گوس و انرژی شکست محاسبه می گردد. مساحت زیر منحنی کشش تکمحوری-جابهجایی کششی را انرژی شکست در سطح واحد مى نامند (G_f)، l_{dis} برابر با طول مشخصه المان (در المانهاى سه بعدى برابر با ريشه سوم حجم المان) است [٣۵]. سطح تعريف شده به وسيله نمودار تنش-جابجایی و سطح برش اصطکاکی خشک پسماند را مود II انرژی گسیختگی G_{f}^{II} می نامند.

در مرجع [۳۶] رابطه $G_f^{\ II}=0.13\sigma+0.058N\ /\ mm$ در مرجع (۳۶) برحسب مگاپاسکال است (با علامت مثبت) ارائه شده؛ اما این رابطه در [۳۷] مورد نقد قرار گرفته و با توجه به همبستگی پایین این رابطه و با توجه به مکانیسم گسیختگی، یک کران بالا $G_{f}^{II} = 0.14\sigma + 0.02N \ / \ mm$ و یک کران پایین $G_{f}^{II}=0.02\sigma+0.005\,N~/mm$ در نظر گرفته شده است (شکل ۷).

شکل ۸. منحنی تسلیم و جهت جریان پلاستیک روی هر صفحه نمونه [۳۲]

Fig. 8. Yield curve and direction of plastic flow on a sampling plane

$$C_{mob} = -m_{soft,c} \left(\varepsilon_{di} - \varepsilon_{di,peak} \right) + C_{peak} \tag{19}$$

ضریب m_{soft} پارامتر نرخ نرمشوندگی است و نرخ کاهش پارامترهای مقاومتی را تعریف می کند. این پارامتر در مقابل تست برش مستقیم (طوری که مساحت زیر منحنی تنش–جابهجایی برابر با انرژی در مورد دوم شکست گردد) کالیبره می شود.

خرابی در کشش بصورت نمایی و به شکل زیر پیشنهاد می شود [۳۲]:

$$\frac{\sigma'_t}{\sigma'_{t,\max}} = \exp(-h_{v2}\varepsilon_{di}) \tag{(7.)}$$

در این رابطه $\sigma'_{i,\max}$ مقاومت کششی اولیه و σ'_{i} مقاومت کششی در کرنش خرابی \mathcal{E}_{di} می باشد. این عبارت نشان می دهد که با افزایش کرنش خرابی، مقاومت کششی به سمت صفر میل می کند. $h_{v,2}$ پارامتری بدون بعد برای کنترل نرخ کاهش پیوند است. در این راست، پارامتر مزبور را مشابه با پارامتر \mathbf{A}_{mat} میتوان با کالیبره کردن تعیین کرد. لازم به ذکر است پارامتر پارامتر می میتوان با کالیبره کردن تعیین کرد. لازم به ذکر است پارامتر مصالح بکار می رود. این موضوع در رابطه (۲۰) مشهود است. از این رو با استفاده از این پارامتر و افزایش کرنش پلاستیک، مقاومت کششی مصالح بنایی کاهش می یابد. محل قطع غیرهموار سطوح تسلیم یا توابع پتانسیل

$$\boldsymbol{\varepsilon}_{\boldsymbol{\gamma},i}^{p} = \left|\boldsymbol{\varepsilon}_{\boldsymbol{\gamma},d}^{p}\right| + \left|\boldsymbol{\varepsilon}_{\boldsymbol{\gamma},t}^{p}\right| \tag{1Y}$$

اندیسهای n و γ کرنش پلاستیک نرمال و کرنش پلاستیک برشی را نشان می دهند، در حالی که اندیسهای D و t قسمتهای مربوط به منحنی تسلیم را نشان می دهند (شکل ۸). در معادلات (۱۶) و (۱۷) فرض شده که کرنشهای پلاستیک حاصل از قسمتهای مختلف منحنی تسلیم اثر یکسانی روی اُفت دارند.

برخلاف مصالح نرم و شکل پذیر (همانند فولاد)، از آنجا که قسمتهایی از مصالح ترد که وارد فاز پلاستیک شدهاند قادر به تحمل نیرویی نیستند، از این رو خرابی مصالح موجب افت مقاومت کلی می گردد. بنابراین نمیتوان رفتار چنین مصالحی را به تنهایی در قالب مدلهای پلاستیسیته بیان کرد. از سوی دیگر، میزان کاهش پیوند که متشکل از چسبندگی و اصطکاک بین ذرات مصالح است، نسبت به پیوند اولیه بایستی به طریقی به افزایش کرنش خرابی مربوط شود. برای مدل مور –کلمب، نرمشوندگی محلی به شکل زیر در نظر گرفته شده است که اگر کرنش خرابی روی هر صفحه نمونه بیشتر از کرنش خرابی بیشینه شود، رفتار پس از نقطه اوج شروع شده و به همین علت چسبندگی و/یا زاویه اصطکاک کاهش می یابد تا به مقادیر پسماند برسند (شکل ۹–الف) [۳۳].

$$tan\varphi_{mob} = -m_{soft,\varphi} \left(\varepsilon_{di} - \varepsilon_{di,peak} \right) + tan\varphi_{peak} \quad (1A)$$

شکل ۹. الف-رابطه بین زاویه اصطکاک بسیج شده و کرنش خرابی روی هر صفحه نمونه ب- وضعیت تنش روی یک صفحه نمونه [۳۳] Fig. 9. Relation between mobilized friction angle and damage strain on each sampling plane, Sample local stress state of integration

جدول ۱. پارامترهای حاصل از کالیبراسیون مدل در یک نقطه گوس با نمودار تنش-جابهجایی آزمایشگاهی

Table 1. Parameters obtain with calibration the model against experimental stress-displacement curve

	σ (MPa)	A_{mat}	р	R_{f}	$G_f^I(N/m)$	$G_f^{II}(N/m)$	A_d	h_{v2}	m _{soft,c}	$m_{soft,\varphi}$
آزمایش کشش	-	•/•••۵	-	-	۵٩/٣	_	-	۱/۵	-	_
	٠/١	•/••۵	۱/•	۰/۹۵	١٢/٠	۴۰/۰	۱/•	۲/۰	• / ١	١٠
آزمایش برش	•/۵	•/•• \	۱/•	۰/۹۵	١٢/٠	٨•/•	۱/۰	۲/۰	۰/۰۵	٨
	١/٠	•/•• \	۱/•	۰/۹۵	١٢/٠	11./.	۱/۰	۲/۰	۰/۰۳	۶
پانل بنایی	-	•/••۵	۱/۰	۰/۹۵	۱۸/۰-۶/۰	$r \cdot / \cdot - \Delta / \cdot$	•/•	۶/۰	• / ١	١٠

پلاستیک نیاز به توجهی خاص دارند، چرا که مسیر برگشت تنش به وسیله مشتقهای همه سطوح تسلیم و پتانسیل مجاور تحت تأثیر قرار می گیرد. در کار حاضر از مبانی ارائه شده در مرجع [۳۸] استفاده شده است (شکل ۹-ب).

۳- اعتبارسنجی مدل

در این بخش، مدل چندصفحه ای پیشنهاد شده با آزمایشهای کوچک (آزمایش کشش مستقیم بتن، تست دوآجره بنایی) و آزمایش پانل بنایی بررسی می شود. به منظور استفاده از مدل در تحلیل رفتار بنایی، باید پارامترهای معرفی شده در بخش قبل، با کالیبره کردن مدل چندصفحه برای یک نقطه گوس (در سطح تنش [۷]) در مقابل نمودار تنش-جابهجایی (که سطح زیر آن برابر با انرژی شکست است (شکل ۷)) محاسبه شود. این ارزیابی در یک نقطه گوس با انتگرال گیری بر روی روابط ساختاری نموی بدست آمده است. الگوریتم مورد نیاز در قالب کد UMAT در نرمافزار

اباکوس مورد استفاده قرار می گیرد. در جدول ۱ پارامترهای مورد استفاده در مثالهای مقاله حاضر، که به وسیله کالیبره کردن بطور جداگانه محاسبه شدهاند، لیست شده است.

۳ – ۱ – مقایسه با ریزآزمایشها ۳ – ۱ – ۱ – تست کشش مستقیم بتن

برای تأیید مدل ارائه شده، تست کشش تکمحوری کنترل جابهجایی (مربوط به نمونه بتنی دارای دو شکاف) که توسط روتس و همکاران (۱۹۸۹) انجام شده، مورد مطالعه قرار می گیرد [۳۹]. دلیل انتخاب این کار، توصیف کاملِ جزئیاتِ آزمایش و آمادهسازی نمونه هاست. نمونه آنالیز شده در ابعاد کاملِ جزئیاتِ آزمایش و آمادهسازی نمونه هاست. نمونه آنالیز شده در ابعاد (۵۰×۵۰ میلیمتر مربع) در وسط طول در هر دو طرف نمونه است (شکل ۱۰– الف). پاسخ مصالح در مقابل کشش با استفاده از نتایج متوسط ۱۰ کرنش سنج

شکل ۱۰. مطالعه بنچ مارک: الف– یک نمونه تست شده (ابعاد به میلیمتر است) ب– رفتار تکمحوری بتن تحت اثر کشش (روتس(۱۹۸۹)) [۳۹] Fig. 10. Benchmark study; a) tested specimen (dimensions are in mm) and b) uniaxial behavior of concrete under tension

جدول ۲. پارامترهای آزمایشگاهی برای مدلسازی تست کشش بتن (روتس (۱۹۸۹)) [۳۹]

 Table 2. Experimental parameters for concrete tensile test (Rots 1989)

	E(MPa)	θ	C(MPa)	\emptyset_f	arphi	$G_f^I(N/m)$	$f_t(MPa)$
بتن	۱۸۰۰۰	٠/٢	٣/٠	٣•/•	۱۰/۰	۵٩/٣	٣/٢۵

شکل ۱۱. الف– مقایسه نمودار نیرو–جابهجایی آزمایشگاهی و مدل حاضر؛ ب–مش استفاده شده و خرابی در جابهجایی ۱/۰ میلیمتر Fig. 11. a) Comparison between presented model and experimental curve, b) Discretization of the model and damage in displacement equal 0.1 mm

ترسيم شده است (شکل ۱۰-ب).

جابهجایی نسبی (در جهت قائم)، در سراسر طول میانی مدل (مشابه با تنظیمات آزمایشگاه) بصورت شکل ۱۰ ثبت شده است. سپس قسمت بالای نمونه تحت بارگذاری با سرعت ثابت قرار می گیرد. پارامترهای آزمایشگاهی مطابق با جدول ۲ هستند.

به علاوه، شرایط مرزی طبق تنظیمات آزمایشگاهی لحاظ شده است، یعنی صفحه بالا قابل دوران بوده ولی بدون اعوجاج است؛ در حالی که صفحه پایین ثابت است. در ادامه نتایج مدل سازی عددی حاضر شامل خرابی و نمودار نیرو-جابهجایی با نتایج آزمایشگاهی در شکل ۱۱ مقایسه شده است. مقدار نیروی بیشینه حدود ۱٪ و مقدار جابهجایی در نقطه اوج حدود ۱۵٪

شکل ۱۲. بررسی اثر مش بر نمودار نیرو-جابهجایی

Fig. 12. Investigation of the mesh dependency with the load - displacement curve

جدول ۳. پارامترهای اَزمایشگاهی برای مدلسازی تست ریزبرشی [۱۸, ۳۵]

Fal	bl	e 3		Exp	per	ime	ent	al	P	Pai	aı	ne	tei	°S	for	c	DU	pl	et	te	St	t moc	le	lir	ıg
-----	----	-----	--	-----	-----	-----	-----	----	---	-----	----	----	-----	----	-----	---	----	----	----	----	----	-------	----	-----	----

	E(MPa)	θ	C(MPa)	\emptyset_f	ψ	$G_f^I(N/m)$	$G_f^{II}(N/m)$	$f_t(MPa)$
آجر	187	۰/۱۵	-	-	-	-	-	-
ملات	2926	۰/۱۵	• /۶٧٣	۴٧/٧	۲ <i>۶</i> /۹	۱۲/۰	۱۲۰/۰-۸۰/۰-۴۰/۰	•/87

برش خالص، تحت سطوح مختلف تنش محصورکننده کنترل کند. هدف اصلی، یافتن تنش متوسط بصورت تابعی از جابهجایی در امتداد درز ملات بود. یک بار گسترده عمودی به مرز قالب L شکل، اعمال می گردد، تنشهای محصورکننده نمونه بنایی برابر با ۰/۱۰ ۵/۰ و ۰/۱ مگاپاسکال است. نیروها محصورکننده نمونه بنایی برابر با ۰/۱۰ ۵/۰ و ۰/۱ مگاپاسکال است. نیروها وسط مقطع درز ملات افقی ایجاد گردد. با توجه به عدم وجود اطلاعات در مورد قالب L شکل، مشابه با مرجع [۸۸]، رفتار آن را بصورت الاستیک وسط مقطع درز ملات افقی ایجاد گردد. با توجه به عدم وجود اطلاعات در مورد قالب L شکل، مشابه با مرجع [۸۸]، رفتار آن را بصورت الاستیک فطی و با مشخصات فولاد یعنی مدول الاستیسیته ۲۰۰ گیگاپاسکال و ضریب پواسون ۲/۰ در نظر می گیریم. رفتار غیرالاستیک فقط در درز ملات محبی از است. آجرها ابعادی برابر با ۵۰*۵۰ (به میلی متر) دارند. خخامت مرجاز است. آجرها ابعادی برابر با ۵۰ میلی مراح ایرا ۲۰۰ (به میلی متر) درز ملات محبی هشت مرجاز است. آجرها ابعادی برابر با ۵۰*۵۰ (به میلی متر) درز ملات محبی هشت مرجاز است. آجرها ابعادی برابر با ۵۰*۵۰ (به میلی متر) دارند. خامت مرجاز افقی ملات برابر با ۵۵ در مایت که با ۲۰۰۰ المان مکعبی هشت مرجاز است. آجرها ابعادی برابر با ۵۰ در نیرا در مای تیرالاستیک متره در درز ملات محبی هشت مکل میلی می ایرا در می تیریم. محسی می درز افقی ملات برابر با ۵۵ در مای ترکیب ملات و آجر بصورت JG-B در گرهی مدل شده است. نتایج آزمایشگاهی برای ترکیب ملات و آجر بصورت JG-B در فرد است. ازمایشاهی برای ترکیب ملات و آجر بصورت JG-B در فرد ملات شده است. نتایج آزمایشگاهی برای ترکیب ملات و آجر بصورت JG-B در فلات بر فیزی میوسط در درز ملات شده است. نتایج آزمایشگاهی برای ترکیب ملات و آجر بصورت JG-B در فلات می متوسط در درز ملات فلات می می می می درد ملات در فلات می در در ملات فلات در ملات فلات میم می گردد.

اختلاف را نشان می دهد، دلیل اختلاف محل نقطه اوج این است که در آزمایش، مصالح بصورت همزمان وارد فاز پلاستیک می شوند؛ اما در مدل ریزصفحه (در یک نقطه گوس)، قبل از نقطه اوج برخی صفحات وارد فاز پلاستیک شده و برخی الاستیک میمانند. در قسمت نرمشوندگی، تفاوتهایی مشاهده می گردد که عمدتاً ناشی از شرایط مرزی آزمایشگاهی بوده که با توجه به ابعاد کوچک نمونه، بسیار حساس است. پیشبینی می شود برای نمونه های با ابعاد بزرگتر این تفاوتها به حداقل برسد. همچنین حساسیت به ابعاد مش در شکل ۱۲ برای دو حالت مش ۱ شامل ۱۵۹۷ المان (۲۱۰ المان مکعبی ۸ گرهی و ۶۹۴۷ المان گوهای چهار گرهی) و مش ۲ شامل ۱۵۵۷ المان (۲۱۲ المان مکعبی ۸ گرهی و ۸۷۹ المان گوهای چهار گرهی) بررسی می گردد.

۳– ۱– ۲– تست برش دوآجره (ریزبرش)

واندرپلویجم [۳۶] یک تست برشی طراحی کرد تا درز ملات را برای

1 The Cupplet test (micro shear)

شکل ۱۳. مودهای گسیختگی نمونههای بنایی در طول برش مستقیم

Fig. 13. Failure modes for masonry sample in Pure shear

شکل ۱۴. الف-مش استفاده شده و ب-خرابی در جابهجایی ٤/+ میلیمتر

Fig. 14. a) Mesh of the model employed for the simulations, b) damage in displacement equal 0.4 mm

در طول تست برشی برای هر دو نوع آجر توپر و سوراخدار، بطور کلی بره چهار نوع مود گسیختگی مشاهده شده است (شکل ۱۳). الف– صفحه گسیختگی در یک درز ملات–آجر متمرکز شده (عموماً درز بالا) ب– صفحه گسیختگی در هر درز آجر ملات همراه با ترک عمودی بره

ب– صفحه گسیختگی در هر درز اجر ملات همراه با ترک عمود ملات

> ج- شکست برش خالص لایه ملات د- صفحه گسیختگی در اَجر و ملات

شکل ۱۴ نتیجه آنالیز عددی را نمایش می دهد. همان طور که مشاهده می گردد، مود گسیختگی در ملات قابل تشخیص است. برای مدل عددی، همان طور که بار افزایش می یابد، یک ناحیه از گسیختگی برشی غیرالاستیک در سراسر لایههای افقی درز ملات گسترش می یابد. همان طور که ناحیه

برش الاستیک در عرض نمونه از راست به چپ حرکت می کند، لایه بالایی فعال می ماند؛ در حالی که لایه های وسط و پایین باربرداری دارند [۴۰]. در بار بیشینه، گسیختگی برشی غیرالاستیک، لایه بالایی درز ملات را فعال می کند (مشابه مود الف از شکل ۱۳). شکل ۱۵ منحنی تنش-جابهجایی برشی واندرپلویجم (۱۹۹۳) را با نتایج مدل پیشنهاد شده و مدل المان مجزای مرجع [۸۸] برای تنشهای محصور کننده ۲/۱، ۵/۱ و ۱/۱ مگاپاسکال نشان می دهد. هرچند مدل پیشنهاد شده بطور قابل قبولی با نتایج آزمایشگاهی واندرپلویجم (۱۹۹۳) تطبیق دارد و با تعداد درجات آزادی بسیار کمتر از روش المان مجزا، قادر به تولید نتایج قابل قبول است، ولی تفاوت جزئی در نقطه اوج منحنی ملاحظه می شود، در واقع در تست واندرپلویجم مصالح بصورت همزمان وارد فاز پس از نقطه اوج می شوند؛ اما در مدل ریزصفحه، در یک نقطه گوس قبل از نقطه اوج برخی صفحات وارد فاز پلاستیک شده و برخی الاستیک می مانند.

(۳۵] شکل ۱۵. مقایسه نمودار تنش-جابهجایی برشی مدل چندصفحه، مدل سرهوسیس و همکاران [۱۸] و تست واندرپلویجم [۳۵] Fig. 15. Experimental – numerical comparisons of the load – displacement curves

۳- ۲- در این بخش، مدل چندصفحه ای پیشنهاد شده با نتایج آزمایش و تحلیل عددی پانل بنایی، مقایسه شده است.

۳- ۲- ۱- رفتار پانل بنایی

در سال ۱۹۸۰، پیج نتایج یک سری آزمایش پانل بنایی، تحت بارگذاری یکنوای درون صفحه را منتشر کرد. برای این هدف، او یکسری تستهای دو محوری کشش-فشار و فشار-فشار انجام داد که به نظر بسیاری از صاحب نظران هنوز هم کاملترین برنامه آزمایشگاهی در زمینه رفتار درون صفحه بنایی آجری است. نمونه تست شامل یک پانل ۳۶۰*۳۶۰ میلیمتر مربع است. این نمونه ها تحت اثر تست کنترل-بار تکمحوری و دومحوری قرار

گرفتند. این تستها برای ۵ جهت مختلف تنظیم شدهاند. °0 ، °2.5 ، °45 ، °5.76 و °90 [۴۱]. نتایج آزمایش روی همه جهات جمع آوری شده و یک تصویر نسبتاً کامل از مقاومت مشخصه جهتی^۱ بنایی آجری ارائه می کنند. در مقاله حاضر کشش تکمحوری مورد مطالعه قرار می گیرد. چون تست واقعی با استفاده از سیستم کنترل نیرو انجام شده بود، در تحلیل المان محدود حاضر هم طرح بارگذاری مشابهی را بکار می گیریم. برای کشش، پانل تحت اثر الگوی کششی مشابه شکل ۱۶ قرار میگیرد. بار بصورت تدریجی افزایش می یابد و در لحظه نهایی ناپایدار می گردد (عدم همگرایی). مدل سازی

¹ Directional strength characteristics

جدول ۴. پارامترهای آزمایشگاهی برای مدلسازی تست پیج [٤٦, ٤٢]

	E(MPa)	θ	C(MPa)	\emptyset_f	ψ	$G_f^I(N/m)$	$G_f^{II}(N/m)$	$f_t(MPa)$
آجر	۶۷۴۰	۰/۱۶Y	۴/۳۵	٣•/•	۲۰/۰	-	-	١/۵
ملات	14	• • ۶	٠/٣۵	۴./.	٣•/•	۱ <i>۸/۰-۶/۰</i>	$r \cdot / \cdot - \Delta / \cdot$	•/۲۴

 Table 4. Experimental Parameters for page's test modeling [41, 42]

Fig. 17. Failure envelope for uniaxial tension at different orientations of the bed joints

پیج، برای زاویه صفر درجه نسبت به ملات افقی، مقایسه می گردد (شکل ۱۸– الف). همان طور که مشاهده می شود، مود گسیختگی، در حالت صفر درجه، به صورت دندانه ای است که به خوبی پیش بینی می گردد. همچنین در شکل ۱۸–ب، الگوی خرابی حاصل از مدل حاضر با مرجع [۴۲] مقایسه می گردد. در مدل حاضر از ۴۶۹۶ گره و ۱۷۴۰ المان مکعبی هشت گرهی و در مرجع [۴۲] از ۲۷۴۲۲ گره و ۳۰۴۰۰ المان مکعبی هشت گره استفاده شده است.

۴- نتیجهگیری

در این مقاله، یک مدل ساختاری سه بعدی ارائه شده که قادر است همه مراحل مختلف تغییرشکل، یعنی الاستیک، الاستوپلاستیک و نرمشوندگی را دنبال کند. با توجه به تعریف ضوابط ساختاری در صفحه به جای فضا، برای جهتهای مختلف درز خوابیده نسبت به زاویه ی بار انجام شده است. مقاومت مشخصه جهتی حاصل از مدلسازی عددی در شکل ۱۷ ارائه شده و با دادههای پیج [۴۱] و مدلسازی سایر محققان [۲۲–۴۴] مقایسه می گردد. همان گونه که مشاهده می شود، نتایج آزمایشگاهی پیج پراکندگی زیادی دارد. در برخی زوایا، تفاوت مدلهای عددی با مقادیر میانگین آزمایشگاهی زیاد است. یکی از دلایل این مسأله را می توان به شرایط مرزی آزمایشگاهی نسبت داد. با توجه به ابعاد نسبی کوچک نمونه ها نمی توان بطور دقیق قیود مرزی را اعمال کرد. پیش بینی می شود با افزایش ابعاد نمونه ها از میزان پراکندگی نتایج آزمایشگاهی کاسته شده و مدلهای عددی نتایج دقیقتری ارائه کنند.

در ادامه مود گسیختگی با استفاده از مدل عددی حاضر و نتایج آزمایشگاهی

شکل ۱۸. الگوی خرابی در درز ملات برای کشش تکمحوره موازی درز خوابیده، الف) مقایسه با نتایج تست و ب) مقایسه با مرجع [٤٢] Fig. 18. Damage propagation pattern within the mortar joints in specimens subjected to uniaxial tension, perpendicular to the head joints, Θ = 00, comparison between multi-laminate and a) Page's test, b) shiehbeygi et. al (2008)

برای تأیید عملکرد مدل حاضر، مورد استفاده قرار گرفت. بطور خاص تست کشش مستقیم بتن روتس [۳۹]، تست برش مستقیم دوآجره واندرپلویجم [۳۶] و تست پانل بنایی پیج [۴۱]، بررسی شدند. از مقایسه مدل حاضر با داده های آزمایشگاهی و سایر مدلهای ارائه شده در مقالات تحقیقاتی مشاهده گردید مقدار تنش در نقاط اوج با دقت قابل قبولی پیشبینی می گردد؛ هر چند در محل نقاط اوج نمودارهای آزمایشگاهی و عددی، تفاوت جزئی وجود دارد. دلیل این تفاوت این است که در آزمایش، مصالح بصورت همزمان وارد فاز پس از نقطه اوج می شوند؛ اما در مدل ریزصفحه، در یک نقطه گوس قبل از نقطه اوج برخی صفحات وارد فاز پلاستیک شده و برخی الاستیک می مانند. کنترل روی روابط ساده تر بوده و امکان ارتقای مدل جهت کنترل اتساع، نرمشوندگی و غیره را به راحتی فراهم می کند. ترکیب این مفهوم با شیوه ریزمدل، قدرت تحلیل سازه های پیچیده مانند بنایی را به شدت ارتقا می دهد. شیوه ریزمدل پیوسته قادر است تفاوتهای بین مصالح مختلف را لحاظ کرده و مودهای گسیختگی را به زیبایی نمایش دهد. از طرفی، با توجه به تعداد درجات آزادی کمتر و عدم نیاز به المان درز، مدل سازی و پردازش نتایج نسبت به ریزمدلهای گسسته (پرجزئیات و ساده شده) و روش المان مجزا راحتتر بوده و این امر زمان مدل سازی، تحلیل و پردازش نتایج را بطور قابل ملاحظه ای کاهش می دهد.

در ادامه تعدادی از تستهای آزمایشگاهی گزارش شده در مقالات معتبر

- [11] A.M. D'Altri, S. de Miranda, G. Castellazzi, V.A. Sarhosis, 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels, Computers and Structures, 206 (2018) 18-30.
- [12] P.B. Lourenço, J. Rots, Multisurface interface model for analysis of masonry structures, J Eng Mech 123,7 (1997) 660-668.
- [13] P.B. Lourenco, Computational strategies for Masonry structures, thesis, The Netherlands: Delft University of Technology, 1996.
- [14] D.V. Oliveira, P.B. Lourenco, Implementation and validation of a constitutive model for the cyclic behaviour of interface elements, Computers and Structures, 82 (2004) 1451–1461.
- [15] A.H. Akhaveissy, Lateral strength force of URM structures based on a constitutive model for interface element, Latin Am J Solids Struct, 8 (2011) 445 – 461.
- [16] F. Greco, L. Leonetti, R. Luciano, A. Pascuzzo, C. Ronchei, A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach, in: Procedia Structural Integrity, 1st Virtual Conference on Structural Integrity - VCSI1, 2020, pp. 334-347.
- [17] M. Petracca, L. Pelà, R. Rossi, S. Zaghi, G. Camata, E. Spacone, Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls, Constr Build Mater, 149 (2017) 296–314.
- [18] V. Sarhosis, J.V. Lemos, detailed micro-modelling approach for the structural analysis of masonry assemblages, Comput Struct, 206 (2018) 66-81.
- [19] K.A. Andam, Numerical Evaluation of shear strength of structural masonry assemblages, Butterworth & Co, (publishers) Ltd, 19(7) (1987) 355-360.
- [20] W.W. El-Dakhakhni, R.G. Drysdale, M.M. Khattab, Multi-laminate Macromodel for Concrete Masonry: Formulation and Verification, J. Struct.Eng., 132(12) (2006) 1984-1996.
- [21] O.C. Zienkiewicz, G.N. Pande, Time-dependent multi-laminate model of rocks A numerical study of

 [1] [1] A.H. Akhaveissy, Finite element nonlinear analysis of high-rise unreinforced masonry building, Latin Am J Solids Struct, 9 (2012) 547–567.

منابع

- [2] S.Y. Chen, F.L. Moon, T. Yi, A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers, Eng Struct 30(8) (2008) 2242–2252.
- [3] T. Salonikios, C. Karakostas, V. Lekidis, A. Anthoine, Comparative inelastic pushover analysis of masonry frames, Engineering Structures 25 (2003) 1515–1523.
- [4] A. Anthoine, Derivation of the in-plane elastic characteristics of masonry through homogenization theory, International Journal of Solids and Structures 32(2) (1995) 137–163.
- [5] Anthoine, A Homogenisation of periodic masonry: Plane stress, generalised plane strain or 3D modelling?, Comm. Num. Meth. Engrg 13 (1997) 319-326.
- [6] P.B. Lourenço, J.G. Rots, J. Blaauwendraad, Continuum model for masonry: Parameter estimation and validation, Journal of Structural Engineering, ASCE 124(6) (1998) 642-652.
- [7] A.H. Akhaveissy, C.S. Desai, Unreinforced Masonry Walls: Nonlinear Finite Element Analysis with a Unified Constitutive Model, Arch Comput Methods Eng, 18 (2011) 485-502.
- [8] A.H. Akhaveissy, G. Milani, Pushover analysis of large scale unreinforced masonry structures by means of a fully 2D non-linear model, Construction and Building Materials, 41 (2013) 276-295.
- [9] A.H. akhaveissy, H. Tavanaeifar, In-plane Failure Analysis of URM Structures Based on Strain Hardening and Softening in the Multilaminate Framework, Computational Methods in Engineering Isfahan University of Technology (IUT), 33,2 (2016) 51-71.
- [10] L. Gambarotta, S. Lagomarsino, Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications, Earthquake Engineering and Structure Dynamics, 26 (1997) 423– 439.

fracture of concrete and rock, ASCE J Eng Mech 111 (1985) 559–582.

- [32] V. Galavi, H.F. Schweiger, Nonlocal Multi-laminate Model for Strain Softening Analysis, Journal of Geomechanics, ASCE, 1(30) (2010) 1532-3641.
- [33] Schädlich, H.F. Schweiger, A multilaminate constitutive model accounting for anisotropic small strain stiffness, Int. J. Numer. Anal. Meth. Geomech, 37(10) (2012) 1337-1362.
- [34] P. Rowe, Theoretical Meaning and Observed Values of Deformation Parameters for Soil, Proceedings of the Stress-Strain Behaviour of Soils, Roscoe Memorial Symposium, (1971) 143-194.
- [35] R. Scotta, R. Vitaliani, A. Saetta, E. Oñate, A. Hanganu, A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: theory and validation, Computers and structures, 79(7) (2001) 737–755.
- [36] R. Van Der Pluijm, Shear behavior of bed joints, 6th North American Masonry Conference, 6-9 June 1993, Philadelphia, Pennsylvania, USA, (1993) 125-136.
- [37] R. van der Pluijm, H. Rutten, M. Ceelen, Shear behavior of bed joints, Proceedings of the 12th International Brick/Block Masonry Conference, Madrid, Spain, (2000) 8-12.
- [38] D.M. Potts, L. Zdravković, Finite element analysis in geotechnical engineering Theory, London: Telford, 1999.
- [39] J.G. Rots, R. de Borst, Analysis of concrete fracture in direct tension, International Journal of Solids and Structures, 25 (1989) 1381–1394.
- [40] M.M. Attard, A. Nappi, F. Tin-Loi, Modeling Fracture in Masonry, Journal of Structural Engineering, 133 (2007) 1385-1392.
- [41] A.W. Page, The strength of brick masonry under biaxial tension–compression, International Journal of masonry Constructions, 3(1) (1983) 26-31.
- [42] Shieh-Beygi, S. Pietruszczak, Numerical analysis of structural masonry: mesoscale approach, Computers and Structures, 86 (2008) 1958–1973.

deformation and failure of rock masses, Int. J. Numer. Anal. Meth. Geomech, 1(3) (1997) 219-247.

- [22] ZP. Bazant, CP. Prat, Microplane model for quasi brittleplastic material — Part I Theory, J Eng Mech ASCE, 114 (1988) 1672-1688.
- [23] G. Borino, G. Cottone, F. Parrinello, A microplane model for plane-stress masonry structures, Computational Fluid and Solid Mechanics, 1 (2003) 115-117.
- [24] G.I. Taylor, Plastic strain in metals. Journal of the Institute of Metals, Reprinted in: The Scientific Papers of G.I. Taylor 1, 1958, Cambridge University Press, Cambridge, UK, 62 (1938) 307-324.
- [25] G.N. Pande, K.G. Sharma, Multi-laminate model of clays – a numerical evaluation of the influence of rotation of principal stress axes, International Journal of Numerical and Analytical Methods in Geomechanics, 7(4) (1983) 397-418.
- [26] F.C. Caner, Z.P. Bažant, Microplane model M7 for plain concrete. I: formulation, ASCE J Eng. Mech., 139 (2013) 1714–1723.
- [27] Zreid, M. Kaliske, A gradient enhanced plasticitydamage microplane model for concrete, Comput Mech, 62 (2018) 1239–1257.
- [28] F. Sánchez, P.C. Prat, V. Galavi, H.F. Schweiger, Multilaminate and microplane models: Same principles and different solutions for constitutive behaviour of geomaterials, Association for Computer Methods and Advances in Geomechanics (IACMAG), Indian Institute of Technology, Goa, India, Proc., 12th Int.Conf. of Int. (2008) 911–919.
- [29] A. Baktheer, M. Aguilar, J. Hegger, R. Chudoba, Microplane Damage Plastic Model for Plain Concrete Subjected to Compressive Fatigue Loading, in: 10th International Conference on Fracture Mechanics of Concrete and Concrete, Bayonne, France, 2019, pp. 1-12.
- [30] S. Gambarelli, N. Nisticò, J. Ožbolt, Microplane model for concrete: Part I. State of the art, Applied Mechanics and Materials, 847 (2016) 95-105.
- [31] Z.P. Bažant, B.H. Oh, Microplane model for progressive

for brick masonry based on homogenization approach, International Journal of Solids and Structures, 45 (2008) 998–1016.

- [43] L. Pelà, M. Cervera, S. Oller, M. Chiumenti, A localized mapped damage model for orthotropic materials(in press), Engineering Fracture Mechanics, (2014).
- [44] M. Kawa, S. Pietruszczak, B. Shieh-Beygi, Limit states

چگونه به این مقاله ارجاع دهیم H. Tavanaeifar, A.H. Akhaveissy, 3D Continuous Micro-Model Based on Multi-laminate Concept for the Nonlinear Numerical Analysis of Masonry Panels, Amirkabir J. Civil Eng., 53(11) (2022) 4969-4988.

DOI: 10.22060/ceej.2021.18672.6920

