اولویت‌بندی خطرپذیری لرزه‌ای ساختمان‌های فولادی با استفاده از سیستم استنتاج فازی: مطالعه موردی ساختمان‌های مدارس مناطق منتخب شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی عمران- مهندسی زلزله، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

2 گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشگاه زنجان

چکیده

اولین و مهم‌ترین گام در تهیه طرح بهسازی لرزه‌ای برای ساختمان‌های موجود، تحلیل آسیب پذیری از طریق انجام مطالعات به‌سازی و تهیه گزارشّ‌های کیفی و کمی می‌باشد. از طرفی اغلب ساختمان‌های موجود در شهر تهران به خاطر وجود دلایلی از قبیل لرزه‌خیزی بالای منطقه، به روزرسانی آیین نامه‌های ساختمانی و لرزه‌ای، فراوانی ساختمان‌های قدیمی و غیره نیاز مبرمی به انجام مطالعات بهسازی دارند. در این مطالعات، شناسایی وضعیت ساختمان‌هایی که در اولویت اول بهسازی لرزهای هستند، به ویژه برای ساختمان‌های با اهمیت زیاد دارای کاربری عمومی مانند مدارس، اهمیت بسیار زیادی دارد. در این مقاله، یک فرآیند اولویت‌بندی خطرپذیری لرزه‌ای ساختمان‌های فولادی با استفاده از ساختار سلسله ِ مراتبی ارزیابی و به کمک روش استنتاج فازی پیشنهاد شده است. همچنین این روش برای ساختمان‌های فولادی مدارس شهر تهران به عنوان مطالعه موردی استفاده گردیده است. روند انجام فرآیند اولویت‌بندی به این ترتیب است که اطلاعات مورد نیاز ساختمان‎ها طبق ساختار سلسله ِ مراتبی طراحی شده، جمع‌آوری و دسته‌بندی شده‌اند؛ سپس بعد از ّکمی‌سازی اطلاعات کیفی و فازی‌سازی آنها، داده‌ها طبق سیستم استنتاج فازی، مدل‌سازی، ارزیابی و سپس فازی زدایی گردیده‌اند؛ فرآیند مذکور برای تمامی مراحل ساختار سلسله مراتبی انجام شده تا پارامتر خطرپذیری لرزه‌ای بدست آید. این پارامتر پس از کیفی‌سازی، وضعیت ریسک ساختمان‌ها و نیازمندی بهسازی یا بازسازی آنها را نشان می‌دهد. نتایج حاصل از این تحقیق، ساختمان‌های فولادی مدارسی که خطرپذیری لرزه‌ای بالایی دارند و نیازمند انجام مطالعات بهسازی هستند را به تفکیک مناطق شهری، مشخص کرده و نقش هر یک از پارامترهای تأثیرگذار بر خطرپذیری لرزه‌ای ساختمان‌ها را نشان داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Risk Prioritization of Steel Buildings Using Fuzzy Inference System: A Case Study of School Buildings in Selected Regions of Tehran

نویسندگان [English]

  • Mohammad Hossein Zehtab Yazdi 1
  • Morteza Raissi Dehkordi 2
  • Mahdi Eghbali 3
  • Gholamreza Ghodrati Amiri 2
1 Graduate Student, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran
2 School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
3 Zanjan University
چکیده [English]

The first and most important step in the preparation of seismic retrofit plan for existing buildings is the analysis of their vulnerability by conducting retrofit studies and preparation of qualitative and quantitative vulnerability evaluations. However, most of the existing buildings in Tehran are in urgent need of retrofit studies due to reasons such as high seismicity, up-gradation of building and seismic codes, the abundance of old buildings and so on. In these studies, it is very important to identify the seismic status of the buildings which are in the first priority of seismic retrofit, especially the ones with public use like schools. A seismic risk prioritization technique for steel buildings was proposed in this paper using a risk assessment hierarchical structure and fuzzy inference system. Afterward, this technique was applied in a case study, validating the results obtained for the steel buildings of the schools in Tehran. At the first of the prioritization process, the required information of the buildings was classified according to the designed hierarchical structure; Then, after quantification of the qualitative data and the fuzzification, the data were modeled and defuzzificated based on the fuzzy inference system; This process was performed for all stages of the hierarchical structure to obtain the seismic risk parameter. After the qualification, this parameter indicated the risk of buildings and their requirement for retrofit or rehabilitation. The results that are distinguished by urban districts, determined the high-risk steel school buildings requiring retrofit studies and have shown the role of each effective parameters on the seismic risk of the buildings. These results indicated that among 160 steel school buildings in the studied districts of Tehran, 83 buildings require studies for retrofit or renovation of which 32 school buildings have a more critical situation. Another study also showed that in 6th and 8th districts a high percentage of the school buildings (above 60%) are in high and very high risk status and require special attention.

کلیدواژه‌ها [English]

  • Seismic risk prioritization
  • Fuzzy inference system
  • Hierarchical structure
  • Steel buildings
  • Schools of Tehran
[1] C. Arnold, R. Reitherman, D. Whitaker, Building configuration and seismic design: The architecture of earthquake resistance, STIN, 82 (1981) 29506.
[2]F.E.M. Agency, Rapid visual screening of buildings for potential seismic hazards: A handbook, Government Printing Office, 2017.
[3] J.F. Bird, J.J. Bommer, Earthquake losses due to ground failure, Engineering geology, 75(2) (2004)147-179.
[4] E. Boostan, N. Tahernia, A. Shafiee, Fuzzy—probabilistic seismic hazard assessment, case study:Tehran region, Iran, Natural Hazards, 77(2) (2015)525-541 .
[5]  Bureau of Technical Execution Systems. “Rapid seismic evaluation of existing buildings No.364”, Tehran: Office of Deputy for Strategic Monitoring (2008). (in Persian)
[6] D. Elms, Structural safety–issues and progress, Progress in Structural Engineering and Materials, 6(2) (2004) 116-126.
[7] G. Ghodrati Amiri, S. AsmariSaad Abad, A. ZareHossein Zadeh, Earthquake risk assessment using fuzzy inference systems and its application in seismic rehabilitation studies, Modares Civil Engineering journal, 13(4) (2013) 71-84.
[8]  H. Hellendoorn, C. Thomas, Defuzzification in fuzzy controllers, Journal of Intelligent & Fuzzy Systems, 1(2) (1993) 109-123.
[9] Y.-T. Liou, S.-L. Lo, A fuzzy index model for trophic status evaluation of reservoir waters, Water Research, 39(7) (2005) 1415-1423.
[10] E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE transactions on computers, (12) (1977) 11821191.
[11] Organization for Development, Renovation and Equipping Schools of Iran. Website: http://www.dres. ir (2014).
[12] K.A. Porter, A.S. Kiremidjian, J.S. LeGrue, Assemblybased vulnerability of buildings and its use in performance evaluation, Earthquake spectra, 17(2) (2001) 291-312.
[13] F. Rezaie, M. Panahi, GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decisionmaking techniques, Natural Hazards & Earth System Sciences, 15(3) (2015).
[14] Road, Housing and Urban Development Research Center. “Iranian code of practice for seismic resistant design of buildings Standard No.2800 (4th Edition)”, Tehran (2015). (in Persian)
[15] R. Sadiq, T. Husain, B. Veitch, N. Bose, Risk-based decision-making for drilling waste discharges using a fuzzy synthetic evaluation technique, Ocean Engineering, 31(16) (2004) 1929-1953.
[16] M.A. Salgado-Gálvez, D.Z. Romero, C.A. Velásquez, M.L. Carreño, O.-D. Cardona, A.H. Barbat, Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations, Natural hazards, 80(3) (2016) 1995-2021.
[17] Statistical Center of Iran. Statistical Data and Information. Website: https://www.amar.org.ir/ (2018).
[18] M. Tehranizade, P.M. Seirafian, Determination of uniform hazard spectra with respect to the near field effects for tehran region,  (2010).
[19] S. Tesfamariam, M. Saatcioglu, Risk-based seismic evaluation of reinforced concrete buildings, Earthquake Spectra, 24(3) (2008) 795-821.
[20] S. Tesfamariam, M. Saatcioglu, Seismic vulnerability assessment of reinforced concrete buildings using hierarchical fuzzy rule base modeling, Earthquake Spectra, 26(1) (2010) 235-256.
[21] S. Tesfamariam, Y. Wang, Risk-based seismic retrofit prioritization of reinforced concrete civic infrastructure: Case study for state of Oregon schools and emergency facilities, Natural Hazards Review, 13(3) (2012) 188-195.
[22] K. Vahdat, N.J. Smith, G.G. Amiri, Fuzzy multicriteria for developing a risk management system in seismically prone areas, Socio-Economic Planning Sciences, 48(4) (2014) 235-248.
[23] Z. Wang, Seismic hazard vs. seismic risk, Seismological Research Letters, 80(5) (2009) 673674.
[24] R.R. Yager, Y. RR, On a general class of fuzzy connectives,  (1980).
[25] L.A. Zadeh, Fuzzy logic, neural networks, and soft computing, in:  Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 775-782.
[26] L.A. Zadeh, Fuzzy sets, in:  Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, World Scientific, 1996, pp. 394-432.
[27] L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on systems, Man, and Cybernetics, (1) (1973) 28-44.
[28] B. Zahraie, A. Roozbahani, Risk assessment model based on fuzzy expert systems for construction project Management, Sharif Journal of Civil Engineering, 32(4.1) (2017) 61-70.