Determination of discharge coefficient in ogee spillways and investigation the effects of submergence, upstream slope and apron elevation on its variations

Parvaneh Heidary\textsuperscript{1}, Farzin Salmasi\textsuperscript{2*} and Hadi Arvanaghi\textsuperscript{3}

\textsuperscript{1} M. Sc. Graduated in Hydraulic Structures, Water Engineering Department, University of Tabriz, Iran
\textsuperscript{2} Associate Professor (corresponding author), Water Engineering Department, University of Tabriz, Iran, Email: Salmasi@Tabrizu.ac.ir
\textsuperscript{3} Associate Professor, Water Engineering Department, University of Tabriz, Iran,

ABSTRACT
Discharge over the ogee spillway is related to the length of crest, upstream total head and discharge coefficient. Also discharge coefficient is influenced by several factors. In this study, some parameters that are affecting the discharge coefficient in ogee weir are investigated. These are: ogee spillway upstream slope, apron elevation and downstream submergence. In this regard, some ogee spillway physical models were fabricated. These models include: (1) ogee spillway with vertical upstream face; (2) ogee spillway with inclined upstream face (18, 33, and 45 degrees); (3) ogee spillways with downstream apron elevations (3, 5, 7, and 10 cm thickness) in free flow; and (4) ogee spillway with vertical upstream slope in submerged flow condition. Results show that in all the ogee weirs, the discharge coefficient (C) increases with increasing \((P/H_e)\), and then remain constant. The value of discharge coefficient decreases from 2.25 (in free flow) to 2.15 (in submerged flow). For a constant value of head over ogee spillways \((H_e)\), the discharge coefficient decreases with increasing in downstream apron elevation and submergence. The relative discharge coefficient has constant trend at beginning with parameter \((h_d/H_e)\), then has decreasing trend. The threshold value for submergence \((h_d/H_e)\), is 0.75 in ogee spillway in this study. With increasing relative submergence \((h_d/H_e)\) from 0.75 to 1, the relative discharge coefficient \((C/C_0)\) decreases from 0.88 to 0.24.

KEYWORDS
Ogee Spillway, Discharge Coefficient, Upstream Slope, Downstream Apron Elevation, Free and Submerged Flow.

1. Introduction
In dams, spillways are hydraulic structures that are built to convey the excess flow from floods that are extra from dam capacity. Spillways should be strong, reliable and high-performance structures to prevent severe damages. Therefore, design and construction of dam spillways is very important. If a dam spillway is correctly designed and constructed, flood risks can be prevented by proper management when a flood occurs [1]. Spillways are made in different types, and this can be attributed to geological, hydraulic, project site topography and most importantly economic costs. The most common spillway that is capable of passing large amounts of water on its own is ogee spillway. These spillways are often used in diversion dams due to their high hydraulic efficiency [2]. Tullis and Neilson investigated the performance of the submerged ogee spillway and its stage-discharge
The effects of these three factors on the discharge coefficient of ogee spillway by constructing physical models of ogee spillway in laboratory dimensions. For this purpose, dimensional analysis of the effective parameters on the discharge coefficient is identified and the results of the experiments are analyzed using dimensionless forms.

2. Material and Methods

The experiments were conducted in the hydraulic laboratory of water engineering department, University of Tabriz, Iran. Laboratory flume is a rectangular shape with 10 meter long, 25 cm wide and 50 cm high that made of metal with glass walls. This flume is located on a chassis 110 cm above the ground and has a constant slope of 0.002. The flume also has been equipped with a series of parallel plates at the upstream. Therefore, decreases the turbulence of the inlet flow to the flume and increases the accuracy of water depth measurement. Excess water, overflow when necessary and return to the main tank through pipes. The maximum flow rate in the flume was 40 l/s and the flow discharge in this range is accurately adjustable by the valve at the beginning of the flume.

The ogee spillway profile was designed and developed by the US Bureau Reclamation (USBR) and with discharge of 11 l/s. Spillway body was built with wood (Fig. 1), downstream apron was made with polyethylene and the three pieces of MDF wood with an thickness of 8 mm. The model was inserted into the flume and then a special adhesive was used to seal it. In each experiment, after determining the desired conditions, upstream water level, downstream water depth and discharge are determined. Then, using the upstream total water head, the total discharge and the spillway width, the discharge coefficient is determined.

3. Results and Discussion

Figures 2 and 3 show that for all ogee spillways in different states, the discharge increases with increasing in upstream water head ($H_u$).

![Figure 1. A view of an ogee spillway used in the experiments](image1)

![Figure 2. Variation of $H_u$ against $Q$ in the ogee spillways with vertical upstream face and inclined upstream face](image2)

![Figure 3. Variation of $H_u$ against $Q$ in the ogee spillways with different downstream apron height](image3)

The results showed that the maximum discharge coefficient for vertical upstream face is about 2.25 whereas, its maximum value for sloping faced spillway is about 1.9 (Fig. 4). In the the word, the slope of the
spillway face, reduces discharge coefficient by an average of 12%.

Figure 4. Variation of discharge coefficient \((C_i)\) against dimensionless parameter \(p/H_e\)

According to Fig. 5, it can be resulted that by increasing the apron elevation in downstream of the spillway, the discharge coefficient reduces.

Figure 5. Variation of discharge coefficient \((C_i)\) against dimensionless parameter \(p/H_e\)

According to results, as the ratio \((p/H_e)\) increases, the value of the relative discharge coefficient \((C_i/C_0)\) initially has a constant trend until it reaches \((p/H_e)=1.4\). Then it has a downward trend and then it reaches to \((p/H_e)=1.9\), and it has a constant trend. In this range, the value of \(C_i/C_0\) reaches an approximate value of 0.985.

The results showed that in the range of \(p/H_e=1.2\) to \(p/H_e=1.7\), the value of \(C_i\) for 18 degree spillway is lower than that of the other slopes (Fig. 6).

Figure 6. Comparison of changes in the relative discharge coefficient \((C_i/C_0)\) against dimensionless Parameter \(p/H_e\)

4. Conclusions

The results showed that variations in discharge coefficient \((C_0)\) with parameter \(p/H_e\) in all spillways initially increased, and then reaches an almost constant value. However, this increase was lower for vertical upstream face. This indicates that upstream face slope or downstream submergence decreases the discharge coefficient. Spillway with 3 cm apron elevation had the lowest decrease in \(C_0\) and spillway with 10 cm apron thickness had the highest decrease in \(C_0\). The discharge coefficient decreases with increasing in submergence rates. The threshold value for submergence \((h_d/H_e)\), is 0.75 in ogee spillway in this study. With increasing relative submergence \((h_d/H_e)\), from 0.75 to 1, the relative discharge coefficient \((C_i/C_0)\) decreases from 0.88 to 0.24.

References