Investigation of Artificial Intelligence Approaches Capability in Predicting the WasteWater Treatment Plant Performance
(Case Study: Tabriz WasteWater Treatment Plant)

MohammadTaghi Aalami a,1, Nasim Hejabi b, Vahid Nourani a, Seyed Mahdi Saghebian b

a Department of Civil Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz- Iran
b Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar- Iran

Abstract:
Due to the excessive concern about environmental issues, researchers had to come up with a better solution to control the WasteWater treatment plants (WWTPS). In this research, two approaches, including Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been used for modeling effluent quality of Tabriz WasteWater Treatment Plant. Input data of models consist of BOD eff, COD eff, TSS eff and pH eff of influent sewage related to Tabriz Treatment Plant which have been used to predict the corresponding value of BOD eff, COD eff and TSS eff concerning the treatment plant effluent. The daily, weekly and monthly average data have been studied. According to results, two approaches mentioned, have the best performance in the prediction of the monthly average dataset of effluent parameters of Tabriz WasteWater Treatment Plant.

Keywords: WasteWater Treatment Plant, Artificial Intelligence Models, Artificial Neural Network, Support Vector Machine, Effluent quality of Wastewater Treatment Plant.

1-Introduction:
Rapid urban development in residential and urban areas has created a heavy burden on the environment, which is often of less importance for economic and industrial development, especially in developed countries [1]. Increasing concern over environmental issues has encouraged researchers to focus their attention on the proper performance and control of Wastewater treatment plants (WWTPS) [2], [3]. Considering as the number of wastewater treatment plants and their importance increased day by day, the prediction and the analysis of the pollutant parameters based on new methods are necessary [4].

Operation and safe control of a wastewater treatment plant can be achieved by developing a modeling tool in predicting the wastewater treatment plant performance based on past observations of key parameters of the quality. The wastewater treatment plant contains of several complex processes such as physical, biological and chemical processes. Most of these processes exhibit nonlinear behaviors which is difficult to describe with linear mathematical models [3]. Therefore, artificial intelligence techniques have been developed as an alternative to these mathematical models [4]. Due to the complexity of estimating the quality parameters of the treatment process and their relation, in the present study, artificial neural network and support vector machine have been used to model the behavior of Tabriz wastewater treatment plant. In recent years, many studies have been carried out to assess the behavior of Wastewater Treatment Plant by using the Artificial Intelligence methods. Hamed et al. (2004) used Neural network models in predicting daily concentration of BOD eff and SSS eff parameters at Siro Wastewater Treatment Plant in Egypt [5]. Turkmenler and Pala (2017) developed Artificial Neural Network Techniques (ANN) to predict the BOD eff of Wastewater Treatment Plant in Turkey [4]. Nourani et al. (2018) offered FFNN, ANFIS, SVM, MLR and Simple Averaging Ensemble (SAE), Weighted Averaging Ensemble (WAE) and Neural Network Ensemble (NNE) techniques to increase the performance of single models, to predict BOD eff, COD eff, and TNe eff of the Nicosia Wastewater Treatment Plant in Cyprus [6]. According the high ability of Artificial Intelligence techniques, it is assumed that these methods can appropriately predict the effluent quality parameters by using influent quality parameters of the WWTP. according to the literature reviews, these approaches were mostly used in predicting daily average parameters and, there were no studies including all three types of daily, weekly, and monthly average. Therefore, in the present study, we compare the efficiency of ANN
The treatment process consists of two primary and secondary treatment stages. The first stage is physical treatment, and the latter is biological treatment and finally disinfection. The datasets used in this research included BODs, COD, TSS and PH parameters (daily, weekly and monthly) of influent of wastewater treatment plant as independent parameters and BODs, COD and TSS parameters (daily, weekly and monthly) of effluent of Tabriz wastewater treatment plant as dependent parameters. The data collected for daily and weekly average is assembled from March 2009 till Nov. 2017 and the dataset for monthly average is gathered from 2002 up to Nov. 2017. 75% of the data were obtained for training dataset while 25% of the data were classified for the testing dataset. The data is normalized with mapminmax command in MATLAB ready code.

2-2-Artificial Neural Network:

One of the most common type of ANN is Multi-Layer Perceptron that consists of three typical layers: (I) input layer, (II) hidden layer and (III) output layer [7]. To simulate the effluent quality parameters of Wastewater Treatment Plant, a Multi-Layered Perceptron (MLP) Neural Network model with one hidden layer, different number of neurons and for mapping the information from the input layer to the hidden layer of the sigmoid tangent function and for mapping information from the hidden layer to the output layer, linear stimulator was used. The Levenburg-Marquardt (LM) algorithm was used to train Multi-Layer Perceptron Network and the maximum number of repetitions in the network training process was considered 1000. The number of neurons in the hidden layer is determined by trial and error in order to find the model with the lowest error value from 1 to 20 neurons.

2-3-Support Vector Machine:

The SVM algorithm can be used wherever it is necessary to identify patterns or classify objects into specific classes. Unlike most neural networks, SVM networks consider the operational risk as the objective function and calculate its optimal value instead of reducing the modeling or classification error [8]. In order to model the effluent quality of Tabriz wastewater treatment plant, RBF kernel was used.

2-4-Multiple Linear Regression:

The Multiple linear regression is used to model the relationship between descriptive and response variables by placing a linear formula for the observed data. According to this feature, the MLR method has been used in various environmental studies [9].

2-5-Model Performance Criteria:

In this study, the most common criteria consist of correlation coefficient (R), determination coefficient (DC) [10], root mean square error (RMSE) have been used.

\[
R = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2 \sum_{i=1}^{N} (y_i - \bar{y})^2}}
\]

(1)

\[
DC = 1 - \frac{\sum_{i=1}^{N} (x_i - y_i)^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}
\]

(2)

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_i - y_i)^2}{N}}
\]

(3)

3-Results and discussion:

3-1-Artificial neural network method:

The modeling results for daily average data show that ANN model in predicting BOD$_{eff}$ performs better than COD$_{eff}$ and TSS$_{eff}$ according to R, RMSE and DC values of testing datasets which is 0.82, 3.93, 0.676 for BOD$_{eff}$, 0.788, 6.206, 0.61 for COD$_{eff}$ and 0.7, 3.03, 0.48 for TSS$_{eff}$, respectively. The quality parameters obtained from the Neural Network are in good agreement with the observed values.

According to the values of R, RMSE and DC of testing dataset of weekly average, Neural Network model in predicting BOD$_{eff}$ parameter is 0.84, 3.127 and 0.703, 0.82, 4.8 and 0.68 in predicting COD$_{eff}$ and 0.78, 2.69 and 0.622 in predicting TSS$_{eff}$ parameter. Therefore, the performance of Neural Network model in predicting BOD$_{eff}$ is better than COD$_{eff}$ and COD$_{eff}$ is better than TSS$_{eff}$.

The performance of the Neural Network model in predicting monthly BOD$_{eff}$, COD$_{eff}$ and TSS$_{eff}$ parameters, is acceptable due to R, RMSE and DC of testing dataset of monthly average which is 0.87, 2.86 and 0.76 for BOD$_{eff}$, 0.859, 4.51 and 0.715 for COD$_{eff}$ and 0.8, 2 and 0.63 for TSS$_{eff}$, respectively. This model in predicting BOD$_{eff}$ has better performance than COD$_{eff}$ and in predicting COD$_{eff}$ has better performance than TSS$_{eff}$. The quality parameters obtained from the
neural network are in good agreement with the observed values.

3-2-Support Vector Machine method:

According to the results of Support Vector Machine model for daily average data, the model in predicting BOD$_{eff}$ has better performance than COD$_{eff}$ and in predicting COD$_{eff}$ has better performance than TSS$_{eff}$ due to R, RMSE and DC values of testing stage which are 0.82, 3.93 and 0.676 for BOD$_{eff}$, 0.79, 6.18 and 0.617 for COD$_{eff}$ and 0.69, 3.06 and 0.476 for TSS$_{eff}$, respectively.

According to R, RMSE and DC of testing dataset of weekly average, the support vector machine model in predicting BOD$_{eff}$ has 0.817, 3.33 and 0.66 values, in predicting COD$_{eff}$ has 0.8, 5.18 and 0.63 values and in the TSS$_{eff}$ parameter prediction has 0.78, 2.75 and 0.604 values, respectively. Therefore, the performance of the support vector machine model in predicting BOD$_{eff}$ is better than COD$_{eff}$ and in predicting COD$_{eff}$ is better than TSS$_{eff}$. The quality parameters obtained from the support vector machine are in good agreement with the observed values.

The performance of the Support vector machine model in estimating the monthly BOD, COD and TSS parameters of the effluent quality of wastewater treatment plant is acceptable according to R, RMSE and DC values of testing dataset which is 0.88, 2.8 and 0.77 for BOD$_{eff}$, 0.86, 4.38 and 0.73 for COD$_{eff}$ and 0.79, 2.03 and 0.62 for TSS$_{eff}$, respectively. The support vector machine model in predicting BOD$_{eff}$ performs better performance than COD$_{eff}$ and in predicting COD$_{eff}$ performs better than TSS$_{eff}$.

According to the results, ANN and SVM methods have good performance in predicting the effluent quality parameters of Tabriz wastewater treatment plant on a daily, weekly and monthly average. Both methods in modeling monthly dataset are better than weekly and daily.

3-3-Multiple Linear Regression:

In order to investigate the results of ANN and SVM methods with other methods, Multiple Linear Regression method was used, the results show that Artificial Intelligence methods are superior to the mentioned method.

4-Conclusion:

Artificial Intelligence techniques is an alternative to linear methods. In this research, the capability of Support Vector Machine and Artificial Neural Network methods in simulation of BOD$_{eff}$, COD$_{eff}$ and TSS$_{eff}$ parameters of daily, weekly and monthly data on average of Tabriz wastewater treatment plant were evaluated. According to the results, both methods perform the best performance in modeling the effluent quality parameters of Tabriz wastewater as a monthly basis. The superiority of Support Vector Machine model in comparison with Artificial Neural Network model in simulation of BOD$_{eff}$ and COD$_{eff}$ parameters of daily and monthly average and the superiority of Artificial Neural Network model in comparison with Support Vector Machine model in simulation of BOD$_{eff}$, COD$_{eff}$ and TSS$_{eff}$ parameters of weekly average and TSS$_{eff}$ parameter of daily and monthly average with the highest accuracy and least error in the testing. The MLR method was used in order to investigate the results of ANN and SVM methods with other methods, which shows the superiority of Artificial Intelligence methods over the mentioned method.

References: