Evaluation of the equation of water penetration into concrete using results of “Cylindrical chamber” method

Mahmood Naderi¹, Alireza Kaboudan²

¹ Civil Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran
² Civil Engineering Department, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran

ABSTRACT

Permeability is one of the most effective parameters on concrete durability. Therefore, in this paper penetration of water into concrete is studied. Although most of the researchers have considered the coefficient of permeability obtained from one dimensional Darcy’s equation, in the present paper due to movement of water in all directions, two-dimensional diffusion equation which defines penetration of fluid into a porous material has been used for first time. For this purpose, cubic concrete specimens with different W/C ratios were prepared and their permeability was measured using “Cylindrical chamber” method. In this method, applied pressures and test durations were varied. The two-dimensional equation considered, was solved using Laplace and Henkel transformations and the obtained results were compared with the “Cylindrical chamber” results. Comparison of the theoretical and experimental results showed that the average respective percentage errors calculated for the estimation of wet curve, maximum penetration depth, average penetration depth and wet surface as 23.07, 13.64, 21.41 and 1.66. The coefficients of determination between pressure magnitude and test duration considering the variables of maximum penetration depth, average penetration depth, wet surface, penetrated volume and optimum diffusion coefficients were seen to be higher than 0.95. Furthermore no reliable correlation was observed between the optimum diffusion coefficients and the mentioned variables.

KEYWORDS

Concrete, “Cylindrical chamber”, Permeability, Two-dimensional diffusion equation, W/C ratio.

Introduction

Permeability is one of the key properties of concrete which largely affects its durability. For this reason, permeability evaluation has been paid attention by many researchers. In this regard one-dimensional Darcy’s law is often used for the evaluation of concrete permeability [1, 2]. Since fluids such as water can penetrate into concrete in all directions, it is necessary to use some other equations which govern the two-dimensional fluid movement in concrete with reasonable accuracy. Although diffusion equation has been used in many fields, it has not been used yet to evaluate water penetration into concrete. Therefore, in this paper, two-dimensional diffusion equation is used for first time to predict the water penetration into concrete specimens with different water-cement ratios, under different pressures and test durations. The obtained analytical results are compared with those recorded from “Cylindrical chamber” tests which has the capability to be used on site as well as in the laboratory [3].

Experimental program

Permeability tests using the method of “Cylindrical chamber” were conducted on 28-day cubic specimens with 150x150x150 mm dimensions. The adopted water-cement ratios were 0.4, 0.5 and 0.6. The applied water pressures were 0.1, 0.25, 0.5, 0.75 and 0.95 MPa and the test durations adopted were 0.5, 1.5, 2.5 and 3.5 hours. At the end of the completion of the permeability tests, the specimen was split in halves and the penetration profile (wet curve due to water penetration) was determined, using a common image analysis software. The

¹ Mahmood Naderi: Email: Profmahmodnaderi@eng.ikiu.ac.ir
“Cylindrical chamber” apparatus used for permeability measurements is shown in Figure 1.

![Cylindrical chamber apparatus](image)

Figure 1. “Cylindrical chamber” apparatus.

Having thoroughly cleaned the concrete surface, the metallic base plate is bonded to the surface of the testing area, using an epoxy resin adhesive. After hardening of the epoxy resin, the chamber is filled with water. Then the required pressure is applied to the water in the chamber, by turning the pressure handle and at the required time intervals and the volume of penetrated water is calculated using the readings of the micrometer, attached to the apparatus.

Results and Discussions

Diffusion equation which is shown as Eq. (1), was solved using different diffusion coefficients in the range of \([1 \times 10^{-12} \text{m}^2/\text{s}, 9 \times 10^{-9} \text{m}^2/\text{s}]\), according to the procedure explained in Ref. [4]. The percentage errors for the prediction of wet curves, were calculated using Eq. (2) for the mentioned diffusion coefficients. Having done so, diffusion coefficients were plotted against percentage errors and the optimum diffusion coefficients, corresponding to minimum percentage error, were calculated by smoothing the mentioned graph. The differences between the analytical and experimental wet curves were calculated as the least values, using the optimum diffusion coefficients.

\[
\frac{\partial p}{\partial t} = \beta_z \frac{\partial^2 p}{\partial z^2} + \beta_r \frac{\partial^2 p}{\partial r^2} + \beta_z \frac{\partial^2 p}{\partial z^2} \quad (1)
\]

\[
err = 100 \times \frac{S_{\text{diff}}}{S_{\text{exp}}} \quad (2)
\]

In the above equations: \(p \text{ (N/m}^2\)} = pressure, \(\beta_z\) and \(\beta_r\) (m\(^2\)/s) = diffusion coefficients in vertical and radial directions respectively, \(r \text{ (m)}\) = radial coordinate, \(z \text{ (m)}\) = vertical coordinate, \(t \text{ (s)}\) = time, \(err\) = percentage error in prediction of wet curve. \(S_{\text{diff}} \text{ (mm}^2\)} = absolute differences between the analytical and experimental wet curves, \(S_{\text{exp}} \text{ (mm}^2\)} = experimental wet curve.

Examples of analytical and experimental wet curves and “diffusion coefficients-percentage errors” graph are shown in Figs. 2 and 3, respectively.

Percentage errors for the prediction of penetration profile, maximum penetration depth, average penetration depth and the area of wet surface, using optimum diffusion coefficients are shown in Table 1. It is seen from this table that the area of wet surfaces are predicted more accurately compared with the maximum and average penetration depth.

![Analytical and experimental wet curves](image)

Figure 2. Analytical and experimental wet curves (W/C = 0.4, \(p = 0.95\ \text{MPa and } t = 0.5\ \text{h}\)).

![Diffusion coefficients-percentage errors graph](image)

Figure 3. Diffusion coefficients-percentage errors graph (W/C = 0.5, \(p = 0.50\ \text{MPa and } t = 0.5\ \text{h}\)).

<table>
<thead>
<tr>
<th>Percentage error for prediction of</th>
<th>Penetration profile</th>
<th>Maximum penetration depth</th>
<th>Average penetration depth</th>
<th>Wet surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>29.30</td>
<td>18.24</td>
<td>29.55</td>
<td>8.02</td>
</tr>
<tr>
<td>Min</td>
<td>18.30</td>
<td>7.73</td>
<td>16.44</td>
<td>0.06</td>
</tr>
<tr>
<td>AVE</td>
<td>23.07</td>
<td>13.64</td>
<td>21.41</td>
<td>1.66</td>
</tr>
</tbody>
</table>

![Four-dimensional contour graph](image)

Figure 4. Four-dimensional contour graph of \((\beta_z / \beta_r)\).
Four-dimensional contour graph of optimum diffusion coefficients ratio (β_e/β_o) against W/C, P and t is shown in Fig. 4. The fourth dimension is illustrated with different colors in this figure. It is seen from this figure that the diffusion coefficient in vertical direction is higher than the corresponding radial direction. This may be due to the higher velocity of water penetration in vertical direction due to the applied pressure.

The variation of optimum β_e with W/C, P and t is shown in Fig. 5. It is seen from this figure that while the optimum β_e decreases with increasing the test duration and W/C ratio, the optimum β_e increases with increasing pressure. The same trend was seen for the optimum β_o.

Figure 5. Diffusion coefficients in vertical direction.

The corresponding correlations between water pressure, water penetration duration, experimental measurements and the optimum diffusion coefficients were calculated using a second-order polynomial function. The calculated coefficients of determination listed in Table 2, show that strong correlations exist between the above mentioned parameters.

Table 2. Coefficients of determination obtained using second-order polynomial function for the measured parameters correlations.

<table>
<thead>
<tr>
<th>W/C</th>
<th>Penetration depth (max)</th>
<th>Penetration depth (ave)</th>
<th>Wet surface</th>
<th>Penetrated volume</th>
<th>β_e</th>
<th>β_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.9880</td>
<td>0.9855</td>
<td>0.9887</td>
<td>0.9960</td>
<td>0.9825</td>
<td>0.9512</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9877</td>
<td>0.9869</td>
<td>0.9891</td>
<td>0.9968</td>
<td>0.9668</td>
<td>0.9613</td>
</tr>
<tr>
<td>0.6</td>
<td>0.9932</td>
<td>0.9931</td>
<td>0.9952</td>
<td>0.9928</td>
<td>0.9650</td>
<td>0.9656</td>
</tr>
</tbody>
</table>

Correlation between the optimum β_e and penetrated water volume is shown in Fig. 6. From Fig. 6, the coefficient of determination of 0.328 shows that a weak correlation exists between the mentioned parameters. This may be due to the different variation of these parameters which tends to take place with time. It should be noted that due to the similarity of other experimental parameters variations with penetrated water volume, weak correlations also existed for the optimum β_o and other experimental measurements. The same trends was also seen for the correlation of the optimum β_e and the mentioned parameters.

Figure 6. Correlation between optimum β_e and penetrated water volume.

Conclusions

In this paper, two-dimensional diffusion equation was employed to predict the experimental results obtained from “Cylindrical chamber” method. It was seen that the average percentage error for the prediction of penetration profile was 23.07 percent. It was also seen that the optimum diffusion coefficient in vertical direction was higher than that seen in radial direction. The results also showed that the optimum diffusion coefficients decreased with increasing test duration and increased with increasing W/C ratio and the water pressure. A regression analysis showed strong correlations between the measured parameters of water pressure, water penetration duration and penetrated water volume (or maximum and average penetration depth, area of the wet surface and optimum diffusion coefficients). Contrary to the above observations, weak correlations were seen between the optimum diffusion coefficients and the penetrated water volume (or maximum and average penetration depth and the area of wet surface).

References