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ABSTRACT:  This research presents an analytical model for developing a fiber frame element based 
on local stress field theory. The proposed formulation is developed through the Lagrangian kinematics 
assumption to derive the weak form of the equations in large strain conditions. In this regard, the effect 
of bond-slip has been considered by removing the perfect bond assumption. The governing equations 
for each element are developed by the directional stiffness matrix in weak form. The extracted formula 
is based on Timoshenko's beam theory, with axial, bending, and shear interaction effects in the domain 
of each element. The components of the stiffness matrix are defined through directional derivatives of 
the semi-linear form of the equations. Moreover, the suggested approach evolves from cubic Hermitian 
polynomials and the local stress field theory. The validation of the analytical method is provided by 
the available experimental tests. The implemented code could cover the overall behavior of reinforced 
concrete members, as well as, the maximum crack width, slip profile, and crack growth. The results 
show that such a modeling method is capable of simulating RC members.
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1. Introduction
Fiber-based approaches are the most commonly used due to 

concurrently satisfying the accuracy, reliability, computational 
efficiency, and robust algorithmic performance, as well as the 
nonlinear flexural-shear interactions consideration [1, 2]. The 
state-of-the-art review on the existing frame models with the 
inclusion of shear responses was excellently presented in [3]. 
Although the literature presents plenty of other interesting 
formulation approaches based on force-based elements [4-8] 
or displacement-based elements [9-11], there is still a lack 
of methods that consider bond-slip behaviors based on a 
finite strain description. Consequently, this paper is extended 
the displacement-based frame element of Limkatanyu 
and Spacone [12] which is different from those published 
previously. In other words, an exact multi-directional stiffness 
matrix is analytically derived based on the post-cracking 
bond-slip interaction between concrete and steel bars, as 
well as the presentation of a Timoshenko fiber frame model 
for large displacement analysis by using Green-Lagrange 
finite strain tensor. The present model is a simple applicable 
approach that is almost accurate and time-saving, also it holds 
proper convergence compared to micro modeling methods.

2. Methodology
The approach can be applied to finite elements consisting 

of fiber beam-column elements which are prepared in the 
MATLAB framework. The model has been constructed by 
using the equilibrium conditions of an infinitesimal segment 

with bond interfaces at bars and constant external forces. 
In this research, the weak formulation of updated 

Lagrangian (UL) kinematics is used to derive the finite element 
equations of a two-node Timoshenko plane beam element. 
The suggested approach evolves from cubic Hermitian 
polynomials, which has been well established by Bazoune et 
al. [13]. The main advantage of the developed expressions of 
shape functions over the classical shape functions is the shear 
deformation factors that can account for shear effects. Hence, 
the nonlinear strain vector (ε_) including the axial strain (εxx) 
and the transverse shear strain (εyx) defined as:

in which, the three strain quantities (e, γ, κ) characterize 
axial strains, shear strains, and curvatures, respectively. The 
bond-slip between the surrounding concrete and the ith fiber 
of reinforcement (uslip) and the normal strain of the concrete 
(εxx

con) and steel bar strain of ith layer (εxx
bars) are defined. 

Regarding the aforementioned aspects, the derivation of 
the weak form of the governing differential equations and 
its numerical implementation is written. To make finite 
element relations, a stable discretization is presented. As 
the local assembly proceeds, continuous displacements field 
discretization is applied. Thus, the element stiffness matrix 
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for continuum finite elements from the governing differential 
equation can be derived. Considering an incremental 
formulation of equilibrium, the tangent stiffness matrix is 
obtained through the first variation of the internal force vector 
in each degree of freedom direction which named multi-
directional stiffness matrix as:

3. Constitutive models
Under the uniaxial tension-compression or biaxial 

compressive stress state of the material, nonlinear material 
characteristics are considered (see [14], [15], and [16]). In 
the RC structures, the constitutive relation in the uncracked 
state is restricted to linear elasticity. The constitutive shear 
model is adapted according to Li [17] which was developed 
for modeling the nonlinear behavior of concrete elements. In 
this paper, the local stress field theory, presented by Soltani 
and Maekawa [18], is considered.

4. Numerical Results and Solution
Some numerical examples are used to verify the accuracy 

and show the efficiency of the proposed material nonlinear 
frame element as well as the solution marching schemes. The 
iterative-incremental method (Arc-Length method) with a 
variable stiffness scheme was applied to analyze structures. 
Afterward, several numerical investigations were performed 
with the proposed model to study the effects of nonlinear 
shear deformations and flexural responses, simultaneously. 
The results of the nonlinear computer analyses are compared 

with the observed data and analytical results. Some examples 
are considered as performed tests by Gilbert and Nejadi [19], 
Sasani, Werner, and Kazemi [20], and Pham, Tan, and Yu 
[21].

5. Conclusions
The main characteristics of the method are substantially 

the flexibility formulation and the constitutive relationship 
characterized by a fixed smeared crack model. The proposed 
model was calibrated and validated through a comparison 
with experimental results and various numerical analyses 
were performed to study the influence of nonlinear flexural-
shear interaction. Thereafter, this method could yield accurate 
and convergent results in agreement with the problems.
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