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ABSTRACT: The high costs of mesh generation in mesh-dependent solution, weakness in capturing 
singularities, the need of modeling all over the domain, the need of problem dependent fundamental 
solutions, etc. are some of weaknesses in the common numerical mesh-dependent methods for solving 
continuum mechanics boundary value problems. In this study, aiming for eliminating some of these 
shortcomings, one of the well-known Radial Basis Functions (RBF) methods, Multiquadric (MQ), is 
developed for dynamic analysis of 2D reservoirs of rigid dams in frequency-domain. To this end, the 
Helmholtz equation and the governing complex boundary conditions are reproduced using MQ function 
in the frequency domain. The results show that with the use of real and complex forms of the MQ 
function, the computational time will be respectively optimized for frequencies smaller and larger than 
the natural frequency of the reservoir. Also, to determine the most important factors affecting both the 
accuracy and convergence of MQ method, first the inefficiency of some of the previously introduced 
methods is proved, and then a new high-speed algorithm is presented. It is shown that the optimal 
shape parameter for MQ method can be formulated in terms of the frequencies of seismic records. 
This advantage simplifies the application of MQ method in this particular problem and reduces the 
computational time, considerably. The high accuracy of the present method is shown in two different 
examples, where the effects of sediment absorption may either be considered or not. The high accuracy 
compared to the exact solutions achieved in this paper is due to a continuous estimation function defined 
all over the domain and also due to the simple algorithm used for finding the optimal shape parameter.
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1. INTRODUCTION
In order to avoid meshing and its difficulties and costs, 

new methods are being introduced and developed for 
dynamic analysis of concrete dams. In this regard, the present 
study develops the MQ-RBF method for the dam seismic 
analysis. MQ-RBF as a meshless method is more convenient 
and accurate than other RBF methods for solving partial 
differential equations (PDEs) [1, 2]. Also, this method is more 
efficient than the mesh-based Finite Element and Boundary 
Element Methods [3]. Both the accuracy and the speed 
of convergence of MQ-RBF depend strongly on its shape 
parameter. So far, researchers have been working on many 
methods for determining the optimal shape parameter but 
a comprehensive method has not been developed yet [4-6]. 
In this study, the commonly previous methods have been 
investigated for determining the optimal shape parameter and 
an appropriate algorithm has been presented for analyzing 
the reservoir of rigid dams for incoming seismic waves. The 
efficiency and accuracy of the present approach compared 
with the exact solutions have been shown through two 
different examples with and without considering the effects of 
sediment absorption.

2. METHODOLOGY
The governing PDE for distribution of frequency-domain 

seismic waves in reservoir of rigid dams is the Helmholtz 
equation:

where ϕ  is the velocity potential function and 
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where n is the normal direction to the boundary, β  
indicates the acoustic impedance ratio of the foundation 
to the reservoir, nsâ implies the normal component of 
boundary acceleration, g is the gravitational acceleration, 
and 1−=i . 

MQ approximates the solution of 2D Helmholtz 
equation with the following estimation function: 
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in which, ),( jj yx  are the coordinates  of the 

computational nodes, jλ  are unknown coefficients 
which will be obtained using N points in the 
computational domain and c is the shape parameter. A 
new high-speed algorithm is proposed in this study to 
select the optimal value of c [4]. Furthermore, regarding 
the imaginary part in the boundary conditions, the 
approximation function is extended from equation (6) to 
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In this study, it has been shown that the complex form of 
MQ function (Equation 7) is more accurate than equation 
(6) for frequencies that are more than natural frequency 
of the reservoir.  

 Results and Discussion 

In order to evaluate the proposed approach, the 
hydrodynamic pressure distribution has been calculated 
in the reservoirs of two rigid gravity dams (Figures 1-3). 
The analytical solutions for both examples exist. In the 
second example, the wave absorption effect of sediments 
is considered in the bottom of the reservoir, while it is not 
considered in the first example. 
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where n is the normal direction to the boundary, β  
indicates the acoustic impedance ratio of the foundation 
to the reservoir, implies the normal component of 
boundary acceleration, g is the gravitational acceleration, 
and 1−=i .

MQ approximates the solution of 2D Helmholtz equation 
with the following estimation function:

in which, ),( jj yx  are the coordinates  of the computational 
nodes, jλ  are unknown coefficients which will be obtained 
using N points in the computational domain and c is the 
shape parameter. A new high-speed algorithm is proposed in 
this study to select the optimal value of c [4]. Furthermore, 
regarding the imaginary part in the boundary conditions, the 
approximation function is extended from equation (6) to the 
following complex form
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to the reservoir, nsâ implies the normal component of 
boundary acceleration, g is the gravitational acceleration, 
and 1−=i . 

MQ approximates the solution of 2D Helmholtz 
equation with the following estimation function: 

(6)  ∑
=

+−+−=
N

j
jjj c)y(y)x(xλf(x,y)

1

222 

in which, ),( jj yx  are the coordinates  of the 

computational nodes, jλ  are unknown coefficients 
which will be obtained using N points in the 
computational domain and c is the shape parameter. A 
new high-speed algorithm is proposed in this study to 
select the optimal value of c [4]. Furthermore, regarding 
the imaginary part in the boundary conditions, the 
approximation function is extended from equation (6) to 
the following complex form 

(7)  
∑

∑

=

=

+−+−

++−+−=

N

j
IjjIj

N

j
RjjRj

c)y(y)x(xλi

c)y(y)x(xλf(x,y)

1

222

1

222

 

In this study, it has been shown that the complex form of 
MQ function (Equation 7) is more accurate than equation 
(6) for frequencies that are more than natural frequency 
of the reservoir.  

 Results and Discussion 

In order to evaluate the proposed approach, the 
hydrodynamic pressure distribution has been calculated 
in the reservoirs of two rigid gravity dams (Figures 1-3). 
The analytical solutions for both examples exist. In the 
second example, the wave absorption effect of sediments 
is considered in the bottom of the reservoir, while it is not 
considered in the first example. 

 

 
Figure 1. Distribution of hydrodynamic pressure on dam in 

example 1. 

The results show that the optimal shape parameter 
can be formulated in terms of the frequencies of seismic 
records (Figure 4). This advantage simplifies 
considerably the application of MQ method in this 
particular problem and reduces the computational time. 

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

P/ρgH

Y
/H

 

 
Exact (η=0.00004)

MQ (η=0.00004)
Exact (η=0.266)
MQ (η=0.266)

Exact (η=0.487)
MQ (η=0.487)
Exact (η=0.664)

MQ (η=0.664)

2 
 

 

 Introduction 

In order to avoid meshing and its difficulties and 
costs, new methods are being introduced and developed 
for dynamic analysis of concrete dams. In this regard, the 
present study develops the MQ-RBF method for the dam 
seismic analysis. MQ-RBF as a meshless method is more 
convenient and accurate than other RBF methods for 
solving partial differential equations (PDEs) [1, 2]. Also, 
this method is more efficient than the mesh-based Finite 
Element and Boundary Element Methods [3]. Both the 
accuracy and the speed of convergence of MQ-RBF 
depend strongly on its shape parameter. So far, 
researchers have been working on many methods for 
determining the optimal shape parameter but a 
comprehensive method has not been developed yet [4-6]. 
In this study, the commonly previous methods have been 
investigated for determining the optimal shape parameter 
and an appropriate algorithm has been presented for 
analyzing the reservoir of rigid dams for incoming 
seismic waves. The efficiency and accuracy of the 
present approach compared to the exact solutions have 
been shown through two different examples with and 
without considering the effects of sediment absorption. 

 Methodology 
The governing PDE for distribution of frequency-

domain seismic waves in reservoir of rigid dams is the 
Helmholtz equation: 

(1)  022 =+∇ ϕϕ K 
where ϕ  is the velocity potential function and k  is the 
wave number that is defined as the ratio of the excitation 
frequency to the velocity of sound waves in the water 
( Ck /ω= ). Also, boundary conditions of the reservoir 
domain are defined for the reservoir, bed, dam body and 
water free surface, respectively, as follow: 

(2)  ϕϕ
C
iω

n
−=

∂
∂ 

(3)  ϕ
β
ωϕ
C

i
n

−=
∂
∂

 

(4)  
ω

ϕ
i
a

n
nsˆ

=
∂
∂

 

(5)  ϕωϕ
gn

2

−=
∂
∂

 

where n is the normal direction to the boundary, β  
indicates the acoustic impedance ratio of the foundation 
to the reservoir, nsâ implies the normal component of 
boundary acceleration, g is the gravitational acceleration, 
and 1−=i . 

MQ approximates the solution of 2D Helmholtz 
equation with the following estimation function: 

(6)  ∑
=

+−+−=
N

j
jjj c)y(y)x(xλf(x,y)

1

222 

in which, ),( jj yx  are the coordinates  of the 

computational nodes, jλ  are unknown coefficients 
which will be obtained using N points in the 
computational domain and c is the shape parameter. A 
new high-speed algorithm is proposed in this study to 
select the optimal value of c [4]. Furthermore, regarding 
the imaginary part in the boundary conditions, the 
approximation function is extended from equation (6) to 
the following complex form 

(7)  
∑

∑

=

=

+−+−

++−+−=

N

j
IjjIj

N

j
RjjRj

c)y(y)x(xλi

c)y(y)x(xλf(x,y)

1

222

1

222

 

In this study, it has been shown that the complex form of 
MQ function (Equation 7) is more accurate than equation 
(6) for frequencies that are more than natural frequency 
of the reservoir.  

 Results and Discussion 

In order to evaluate the proposed approach, the 
hydrodynamic pressure distribution has been calculated 
in the reservoirs of two rigid gravity dams (Figures 1-3). 
The analytical solutions for both examples exist. In the 
second example, the wave absorption effect of sediments 
is considered in the bottom of the reservoir, while it is not 
considered in the first example. 

 

 
Figure 1. Distribution of hydrodynamic pressure on dam in 

example 1. 

The results show that the optimal shape parameter 
can be formulated in terms of the frequencies of seismic 
records (Figure 4). This advantage simplifies 
considerably the application of MQ method in this 
particular problem and reduces the computational time. 

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

P/ρgH

Y
/H

 

 
Exact (η=0.00004)

MQ (η=0.00004)
Exact (η=0.266)
MQ (η=0.266)

Exact (η=0.487)
MQ (η=0.487)
Exact (η=0.664)

MQ (η=0.664)

 
Fig. 1. Distribution of hydrodynamic pressure on dam in example 1. 

  

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

P/ρgH

Y
/H

 

 
Exact (η=0.00004)

MQ (η=0.00004)
Exact (η=0.266)
MQ (η=0.266)

Exact (η=0.487)
MQ (η=0.487)
Exact (η=0.664)

MQ (η=0.664)

 

Fig. 2. Distribution of hydrodynamic pressure on dam in example 1. 

  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

P/ρgH

Y/
H

 

 
Exact (η=0.842)
MQ (η=0.842)
Exact (η=0.975)
MQ (η=0.975)
Exact (η=1.196)
MQ (η=1.196)
Exact (η=1.55)
MQ (η=1.55)

Fig. 1. Distribution of hydrodynamic pressure on dam in 
example 1.

Fig. 2. Distribution of hydrodynamic pressure on dam in 
example 1.

 

Fig. 3. Distribution of hydrodynamic pressure on dam in example 2. 

  

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.2

0.4

0.6

0.8

1

P/ρgH

Y/
H

 

 
Exact (η=0.6)
MQ (η=0.6)
Exact (η=0.8)
MQ (η=0.8)
Exact (η=1)
MQ (η=1)
Exact (η=1.2)
MQ (η=1.2)
Exact (η=1.35)
MQ (η=1.35)

Fig. 3. Distribution of hydrodynamic pressure on dam in 
example 2.

 
 

Figure 4. Variations of optimal shape parameter 
 in terms of frequency ratios in example 2. 

 

0 0.2 0.4 0.6 0.8 1

21

22

23

24

25

26

27

28

29

30

η

C
op

t

Fig. 4. Variations of optimal shape parameter in terms of 
frequency ratios in example 2.



743

R. Babaee et al. , Amirkabir J. Civil Eng., 52(12) (2021) 741-744, DOI:   10.22060/ceej.2019.16443.6230

HOW TO CITE THIS ARTICLE
R. Babaee, E. Jabbari, M. Eskandari-Ghadi, Application of Multiquadric Radial Basis Function 
method for Helmholtz equation in seismic wave analysis for reservoir of rigid dams, 
Amirkabir J. Civil Eng., 52(12) (2021) 741-744.

DOI: 10.22060/ceej.2019.16443.6230

independent computational points, high capability for 
simulating irregular and complex geometries, using domain 
decomposition technique for simply simulating dam-
reservoir-foundation interaction problems, using the strong 
form of governing equations, easy generalization for 3D 
problems, easy to use for solving complex problems, etc. In 
this study, the PDEs and their complex boundary conditions 
governing the hydrodynamic pressure distribution in the 
reservoir of rigid dam have been produced for the first time, 
where an MQ function in the frequency domain has been 
used. It has been shown that the original and complex forms 
of this solution function are optimal in terms of accuracy 
and computational cost for MQ solution which depends 
strongly on the optimal value of the shape parameter, ten 
previously introduced methods have been examined and it 
has been found that they are not applicable for the problem 
considered in this paper. Subsequently, a new high-speed 
algorithm has been proposed for the MQ method for 
seismic analysis of dam reservoirs. Two different examples 
were solved for validation and the results show the capability 
and accuracy of the proposed approach compared with the 
exact solutions.
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