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ABSTRACT: The research investigates a fluid filled pipeline that is connected to a tank at its upstream 
and to a valve in the downstream and undergoes forces of water hammer due to sudden closure of 
the valve. The aim is to study the possibility of instability in this pipeline when there are large lateral 
displacements with small strains. As conventional dynamic analysis models of beams which are based 
on the infinitesimal strain theory (ε=∂u⁄∂x) cannot reflect the effect of large lateral displacements, in 
this study axial stresses are modeled as linear stresses and strains are modeled by so called von Karman 
nonlinear strains. The resulting partial differential equations are solved in the time domain by the finite 
elements method. The linearized equation of lateral vibration is made dimensionless and then it is solved 
in the frequency domain so as to plot dimensionless frequencies versus the dimensionless fluid velocities 
which represent the stability of the pipeline. The results provides useful diagrams to anticipate possible 
pipeline instability induced by fluid velocity. 
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1. 1. INTRODUCTION
When a fluid flows into a closed conduit, an amount 

of pressure much larger than the atmosphere pressure is 
established. A pressurized pipe just like a loaded column is 
vulnerable to the buckling [1]. Likewise, the water hammer 
causes a huge pressure that can potentially destabilize the pipe 
structure.

The simplest pipe configuration to study this phenomenon 
is a reservoir-pipe-valve system. The objective is to study the 
structural instability due to fluid-structure interaction (FSI) 
caused by a sudden closure of the valve considering large 
transvers deflections and yet small strains. 

The mathematical model includes hydraulic and structural 
equations. The classical water hammer theory which leads 
to Joukowski formula is a primary value to quantify the 
hydraulic loads [2]. The structural equations are the axial and 
lateral vibration equations. The so called Euler’s buckling load 
is a result of the structural equations.

In 1744 Euler obtained a formula which predicts the 
minimum load under which a sufficiently slender perfect 
elastic column would buckle prior to a material failure [1]. 
Bazant [1] proved that a pipe under enough hydrostatic 
pressure does buckle. The corresponding buckling pressure is 
calculated using the Euler load which is imposed due to fluid 
pressure.  

Paidoussis authored a comprehensive book about the 

stability of pressurized vessels. He provided a dimensionless 
form of vibration equation to draw frequency domain diagrams 
that show different regions of instability as the fluid velocity 
increases [3]. Later on, Lee and Chung developed Paigdoussis 
equations by making use of the general Lagrangian strains 
widely known as von Karman strains to consider the effect 
of geometrical non-linearity of the pipe. In this approach the 
destabilizing agent is fluid velocity, nevertheless, the issue of 
water hammer is not addressed [4].

To consider the effect of geometrical non linearity in a 
case of waterhamer, new nonlinear axial and lateral vibration 
equations are introduced and solved by finite element method 
(FEM) in the time domain. The results are compared with 
those of the linear frequency domain solutions.

Mathematical model
Waterhammer and pipeline-vibration equations are 

essential in modelling FSI. Their frictionless form reads [5]:
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in which x is pipe axis direction, t is time, g is the 
gravitational acceleration, ξ  is the axial pipe velocity, U is 
the flow velocity, H is the pressure head, fc

 
is pressure wave 
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speed, and υ  is Poisson’s ratio. The term 2 xυ ξ∂ ∂   couples 
the flow hydraulics with the dynamic behavior of the pipe 
wall.

Taking a portion of the pipeline with length dx subject to 
internal axial force (N), shear force (Vs) and moment M, leads 
the equilibrium equations to  
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in which , , , ,p pA e D wρ are cross sectional area, density, 
wall thickness, inner pipe diameter and lateral displacements 
of the pipeline, respectively. The axial force (N) and bending 
moment (M) are 
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where I is second moment of inertia of the pipe cross 

section. Note that the term 2( )w x∂ ∂ in Eq. (5) is the primary 
cause for the nonlinear terms in Eqs. (3), (4). Equations (3) and 
(4) govern the pipe vibrations taking into account geometrical 
nonlinearities stemming from moderate displacements and 
small deformations.

Finite Element Method (FEM)
The FEM is exploited to solve the structural Eqs. (3), (4) 

via the following matrix representation [6, 7]. 
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in which the matrix indices are: , 1, 2; , 1, 2,3, 4i j I J= =  
and { }T

1 1 2 2J w wθ θ∆ =  represents the transverse and slope 
at either sides of the element. The superscripts indicate sub-
matrices and sub-vectors. The mass sub-matrices
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and stiffness sub-matrices [7]
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can be found using Galerkin’s weighted-residuals 
approach. In these relations, anda bψ ψ indicate linear 
Lagrange and Hermite cubic interpolation functions 
employed to approximate axial and bending displacements. 
The q(x) is external distributed transvers load which is in this 
case equal to zero.

Frequency Domain Analysis
The linear form of flow induced pipe vibration yields [3]:
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in which M is fluid mass, m is pipe mass and U is fluid 
velocity. The first and the last terms are flexural and inertial 
effects. The second term is associated with centrifugal forces 
which attributes to the fluid flow in curved portions of the 
pipe (considering the deformed pipe shape) and the third 
term is associated with Coriolis effects. The dimensionless 
equation is [3]:
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where u is dimensionless fluid velocity,
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and L is the length of pipeline. Other non-dimensional 
quantities are 
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To solve Eq. (15) in the frequency domain, use is made of 
Fourier Transform so as to find the corresponding ordinary 
differential equation whose coefficients of the characteristic 
equation are , 1, 2,3, 4.i iα =  The natural frequencies of the 
system corresponds to the non-trivial solution of the system 
of equations constructed by the boundary conditions. 

For the clamped-clamped supports boundaries, and β  = 
0.1 the dimensionless natural frequency diagrams for both 
real and imaginary values (Figs. 1, 2) are determined by 
satisfying the following equation 
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As seen in Fig.1 and 2, the first instability point is for 
u=2  where the real dimensionless natural frequency of the 
first vibrational mode vanishes but the imaginary one arises. 
This instability is of buckling type. At u=8.99 the real part for 
second vibrational mode disappears. Here the so called flutter 
comes to effect as the first and second vibrational modes have 
both real and imaginary parts which are of identical pairs. 

Other frequency domain instability points are seen in the 
diagrams.

DISCUSSION AND RESULTS
The reservoir-pipeline-valve system known as Delft 

Hydraulics Benchmark Problem A introduced by Tijsseling 
[8] is solved to investigate FSI using the prepared solver. The 
system specifications are given in Table 1.

The geometry information of the pipe system indicates 
that β  =0.75, hence the non-dimensional frequany diagarms 
are plotted in Figs 3, and 4.

By comparing the diagrams for the two quantities of 

 

Fig 1. Dimensionless real natural frequency versus dimensionless fluid velocity for β  =0.1 and clamped-clamped 
pipeline 

  

 

Fig 2. Dimensionless imaginary natural frequency versus dimensionless fluid velocity for β  =0.1 and clamped-clamped 
pipeline 

  

Fig. 1. Dimensionless real natural frequency versus dimension-
less fluid velocity for β =0.1 and clamped-clamped pipeline

Fig. 2. Dimensionless imaginary natural frequency versus dimen-
sionless fluid velocity for β =0.1 and clamped-clamped pipeline

Table 1. The properties of the pipeline according to the case study in [8]. 
 

Length (m) 20 
Diameter (mm) 797 
Thickness )mm) 8 

Pipe density (kg/m3) 7900 
Poisson ratio 0.3 

Darcy-Weisbach coefficient 0 
*Reservoir head (m) 0 

*Number of sections in 
simulation 200 

*Steady state velocity (m/s) 1 
*Young’s  modulus (Pa) 2.1E11 

*Wave speed (m/s) 1024.7 
*Valve closure duration (s) 0 

 

 

Fig 3. Dimensionless real natural frequency versus dimensionless fluid velocity for β  =0.75 clamped-clamped pipeline 
  

 

Fig 4. Lateral-middle point displacement subject to waterhammer. 
  

Fig. 3. Dimensionless real natural frequency versus dimension-
less fluid velocity for β =0.75 clamped-clamped pipeline

Fig. 4. Lateral-middle point displacement subject to waterham-
mer.

Table 1.The properties of the pipeline according to the case study in [8].
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β (0.1; 0.75), two conclusions can be drawn. Firstly, the 
instability points and consequently the critical fluid velocity 
is independent of β. Secondly, there is a restablization zone 
roughly in the range 9<u<10 where there is no imaginary 
natural frequency (it did not exist in the frequency diagrams 
for β = 0.1). 

The same investigation for a pinned-pinned supports 
boundaries reveals that the first instability point is equal to 
u= . This finding supports the results of the time-domain 
solution with the details depicted in Fig. 5 which is for L=20m. 
For u< , the time domain results does not rise up and so the 
system vibrates in a stable manner (blue curve). But for higher 
values of velocity divergent motions emerge (green, purple 
and orange curves). A typical instability for a pipe of length 
L =200 m can also be found from the time domain solutions 
when displacement versus velocity is shown (Fig. 6).

2. CONCLUSIONS
The stability of a pipeline subject to the waterhammer load 

can be conducted when a geometrical nonlinear approach for 
the pipe vibration is adopted. The nonlinear structural analysis 
revealed that a pinned-pinned beam shows instabilities of 
buckling or flutter type provided that the dimensionless 
velocity exceeds a specific quantity. This quantity can be found 
via a frequency domain investigation when the nonlinear 
terms of governing equations are omitted. Then they are 
transformed in the frequency domain and solved so as to find 

 

 
Fig 5. Lateral-middle point displacement versus velocity subject to waterhammer for 200 m pipeline length

( )11
0 8m/s; 2.1 10 Pa;V E= =  .    

  

 

 

 

 

Fig 6. Dimensionless imaginary natural frequency versus dimensionless fluid velocity for β  =0.75 clamped-clamped 
pipeline  

 

Fig. 6. Dimensionless imaginary natural frequency versus dimen-
sionless fluid velocity for β =0.75 clamped-clamped pipeline

Fig 5. Lateral-middle point displacement versus veloc-
ity subject to waterhammer for 200 m pipeline length

( )11
0 8m/s; 2.1 10 Pa;V E= = × .

the corresponding instability points.
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