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ABSTRACT:  Estimating the roughness coefficient of erodible open channels plays an important role 
in their hydraulic design. This parameter also is important for the development of numerical models. 
For this reason, several empirical methods have been presented so far to estimate the roughness 
coefficient, while these methods are not sufficiently accurate. In this paper, the so-called Artificial 
Neural Networks (ANNs) and Adaptive Network-Based Fuzzy Inference System (ANFIS) methods 
as soft computing methods are used to estimate the roughness coefficient in erodible open channels. 
To achieve this, none-dimensional water depth with sediment particle averaged size 
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effectiveness on the coefficient via a sensitivity analysis versus the variation of error estimation by elimination 

of variables shows effectiveness of variables like shear Reynolds number and none-dimensional water depth 
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Reynolds numbers ( )*R , Sheilds parameter (θ ), and none-dimensional sediment falling velocity with 
shear velocity ( )fUw  in channel obtained by Buckingham dimensional analysis are considered as input 
variables. Final results show ANFIS ( )84330=2 .R  and ANNs ( )85150=2 .R  model performance 
in comparison to empirical methods and regression-based methods like Multilinear regression and 
multi nonlinear regression methods to estimate the roughness coefficient. Evaluation of the input 
variables’ effectiveness on the coefficient via a sensitivity analysis versus the variation of error 
estimation by elimination of variables shows effectiveness of variables like shear Reynolds number 
and none-dimensional water depth usually ignored in empirical methods. The final results showed that 
due to complicity of sediment transport mechanism in erodible channels, models developed here can be 
a suitable alternative to estimate roughness coefficient.

Review History:

Received:2018-05-30 
Revised:2018-07-20 
Accepted:2018-08-9 
Available Online:2018-10-21 

Keywords:

Estimation 

Roughness 

erodible open channel 

ANNs 

ANFIS

131

*Corresponding author’s email: m.zanganeh@gu.ac.ir

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1- INTRODUCTION
Estimation of the roughness coefficient is an important 

issue for cost-effective hydraulic design of erodible channels. 
Also, accurate estimation of this parameter is essential for 
numerical modeling of fluid flow in the open channels. To do 
so, many experimental attempts have been dedicated to achieve 
some representative empirical formulas for estimation of the 
roughness. These formulas are commonly extracted based on 
fitting a function between the roughness coefficient and its 
effective variables (Sumer et al., 1996). Evaluation of these 
techniques in various conditions convinces their deficiency 
to estimate the coefficient in different conditions. This issue 
might go back to the different hydraulic conditions leading to 
user’s confusion. Inaccurate estimation of the coefficient either 
may lead to the none-economical design of channels or their 
inefficient dimensions. Despite the importance of accurate 
estimation of the coefficient, researchers have never agreed 
on a union formula. In other words, numerous researchers 
have introduced various formulas to estimate the roughness 
coefficient. The main objective of this paper is the application 
of the Artificial Neural Networks (ANNs) and Adaptive 
Network-Based Fuzzy Inference System (ANFIS) features as 
implicit function approximators to find relationships among 
effective input variables and the roughness coefficient as the 

output variable. These approaches have been previously used 
by many researchers to predict some hydraulic processes. 
In recent years, the soft computing-based approaches such 
as Artificial Neural Networks (ANNs) and Fuzzy Inference 
Systems (FISs), Genetic Programming (GP), Support Vector 
Machines (SVMs) and so on are used to predict complex 
phenomena or to estimate functions representing a complex 
physical process. In the field of scour around pipelines 
and bridge piers Kazeminezhad et al. (2010) used ANN to 
estimate scour around marine pipelines induced by waves [1]. 
Zanganeh et al. (2011) employed a PSO-FIS-PSO model to 
estimate the equilibrium depth of scouring beneath pipelines 
imposed by uni-direction currents [2].

2- METHODOLOGY 
Due to the complicity of flow field and sediment transport 

in erodible channels and also ignoring many important 
parameters on channel roughness in the previous works, in 
this paper, new models are attempted to be developed for 
estimation of the parameter by ANNs and ANFIS models. To 
achieve this, a function representing the relationship among 
effective parameters on roughness coefficient is defined as 
follows:
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( ) 0=50 fffss ,g,U,,,w,h,d,kZ              (1) 

in which Z  is a function, sk  is roughness coefficient, 
50d  is average particle size, h  is water depth, w  is fall 

velocity, s  is sediment density, f  is fluid density, 

fU  is shear velocity, g  is gravitational acceleration, 
and f  is dynamic viscosity.  

Using Buckingham theorem, the non-dimensional 
form of the equation to estimate the roughness 
coefficient can be extracted as follows: 

( )f*
s Uw,,R,d/hf

d
k

50
50

=    (2) 

in which f  is a none-dimensional function that can 
either be an implicit function like the ANFIS -based 
model or ANNs. *R  is shear Reynolds number and   is 
Shield’s parameter. 

3- Results and Discussion 

To develop ANNs and ANFIS selected data sets 
from Summer et al. (1996) work [3] categorized as the 
training, validation and testing data sets have been 
selected randomly in order to have models with 
acceptable generalization capability. From 158 data 
points gathered by Summer et al. (1996) 100 data points 
are chosen randomly as training data points, 18 data 
points are used as validation data points, and the 
remaining 40 data points are used as the testing data. 

After selection of the ANFIS and ANNs 
parameters, the training process of the ANFIS models 
for both models trained by real (ANFISR) and 
normalized (ANFISN) data for estimating the roughness 
coefficient are shown in Figures 1 and 2. Decreasing 
trend of the RMSEs for training data sets error in the 
ANFISN reassures either fair selection of input 
variables or fuzzy IF-THEN rules parameters. As it is 
apparent from Figure 2 in the ANFISR the errors 
associated with the training is high. These errors prove 
the ANFISN model performance in comparison with the 
ANFISR model from an error estimation viewpoint. 
Evaluation of the input variables effectiveness on the 
coefficient via a sensitivity analysis versus the variation 
of error estimation by elimination of variables shows 
effectiveness of variables like shear Reynolds number 
and none-dimensional water depth usually ignored in 
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Figure 1. the training process in the ANFIS model by normalized data (ANFISN) 
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Figure 2. the training process in the ANFIS model by real data (ANFISR) 
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Figure 3. Effect of input variables elimination in the training process errors 
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Figure 4. Measured roughness coefficients values versus estimated ones by ANFIS 
  

y =       x -       
R²         

0.00

3.00

6.00

9.00

12.00

15.00

0.00 3.00 6.00 9.00 12.00 15.00

Es
tim

at
ed

 k
s/d

50

Measured ks/d50

Fig. 1. the training process in the ANFIS model by normalized 
data (ANFISN)

Fig. 2. the training process in the ANFIS model by real data 
(ANFISR)

Fig. 3. Effect of input variables elimination in the training 
process errors

Fig. 4. Measured roughness coefficients values versus estimated 
ones by ANFIS

 

  
 
 

Figure 5. Measured roughness coefficients values versus estimated ones by ANN 
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versus testing data, as shown in Figures 4 and 5 and Table 1, 
proves ANN model superiority against empirical models and 
multi-regression methods.  

4- CONCLUSIONS
In this paper, so-called ANFIS and ANNs model and 

Multi Regression (MR) methods are employed to extract 
implicit relationships among the roughness coefficient and 
input variables involved in estimating the coefficient. Besides, 
conventional empirical formulas are implemented to evaluate 
the models. Results show that the employed methods are more 
accurate than empirical methods while other parameters like 
none-dimensional water depth and shear Reynolds number are 
recognized as effective variables on the roughness coefficient.

 
    

 
   

   
     

 

Table 1. Statistical characteristics of the models 
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