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ABSTRACT:  In the process of hydraulic fracture, various physical parameters such as; viscosity, 
inertia of fluid and toughness of rock do not influence the fracture propagation identically, and it is 
probable that one or more of the parameters be more pronounced. Therefore, it may persuade one 
special regime which is named base on the dissipation of energy. In an impermeable rock, the two 
limiting regimes can be identified with the dominance of one or the other of the two energy dissipation 
mechanisms corresponding to extending the fracture in the rock and to flow of viscous fluid in the 
fracture, respectively. In the viscosity-dominated regime, dissipation in extending the fracture in the 
rock is negligible compared to the dissipation in the viscous fluid flow, and in the toughness-dominated 
regime, the opposite holds. It is supposed that the flow of incompressible fluid in the fracture is 
unidirectional and laminar. Besides, the fracture is fully fluid-filled at all times and fracture propagation 
is described in the framework of linear elastic fracture mechanics (LEFM). The contribution of this 
research is a detailed study of the evaluation parameters’ effects on the propagation of hydraulic fracture 
an impermeable brittle rock. Here, the modified perturbation method suggested for evaluating fluid 
viscosity and inertia parameters interaction (FVII). The proposed method provides a good estimate of 
the solution in the wide range of the viscosity/inertia parameters because of the coexistence of both small 
parameters in the governing equations. The results showed that considering the FVII reduce the length of 
the crack, and the crack length decreases with increasing viscosity parameter, and the decreasing trend 
will be intensified by increasing the inertia of fluid. On the other hand, the effects of fluid viscosity in the 
hydraulic fracture injection process are more pronounced than the effects of the inertia parameter on the 
assumption of a laminar flow. Neglecting the effect of the FVII result in a significant error. These errors 
continue to increase with the increase, and may reach about 300%. At last, the results are compared with 
the available references, which confirms the logical process. 
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1- INTRODUCTION
The best references for the technical skills and practical 

background of hydraulic fracturing treatments in the oil and 
gas industry are the compilations provided by Gidley et al [1], 
and Economides and Nolte [2]. In the last decades, researchers 
have made an effort to model the process of hydraulic 
fracturing both analytically and numerically; see Reference 
[3] for some further references. Some other investigation in 
the areas of analytical models for hydraulic fracturing are 
briefly noted in the following:

Spence and Sharp [4] presented a self-similar solution for 
a KGD crack propagating in an elastic, impermeable medium 
with finite toughness. Their model combines lubrication 
theory to model the flow incompressible viscous fluid in the 
fracture; the linear elasticity theory in plane strain to model 
the crack opening due to a given pressure distribution; and 
the fracture mechanics theory by using square-root tip 

asymptote for the crack opening and propagation condition 
controlled by the stress intensity factor. Following Spence 
and Sharp’s method [4], Carbonell [5] have developed a self-
similar solution for the asymptotic case of zero toughness. 
This solution is based on the so-called SCR [6] tip asymptote 
which describes the asymmetric behavior of opening and 
pressure at near the tip of the crack tip. The numerical method 
originally proposed by Spence and Sharp [4]  and later in 
refined form by Adachi [7] and Asgari [8] is appropriate to 
find the solution in this intermediate regime, where the effects 
of fluid viscosity and rock toughness are of the same order. 
Ongoing, many researchers, in order to simplify the analysis 
of the problem, consider it as one of toughness regime (waste 
of energy due to toughness or hardness of the rock) e.g. 
Garagash (2000) [9] or viscosity-dominated (loss of energy 
due to high viscosity of the fluid) [10, 11]. Huang et al. [12] 
examined the propagation of a plane-strain fracture under 
condition of zero-viscosity of fluid. They have improved a 
self-similar solution under assumption of the dominance 
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of the fluid inertia forces as compared to the viscous drag. 
Some other researchers [4, 13, 14]  have assumed that the 
fluid inertia effects on either fracture propagation or the fluid 
flow in the crack are negligible (even under conditions when 
fluid viscosity vanishes) and the fluid flow can be modeled by 
the lubrication theory [15]. Garagash (2006) [16] applied an 
explicit solution for a fracture propagating in the toughness-
dominated regime when the energy dissipated in the viscous 
fluid flow inside the fracture is negligibly small compared 
to the energy expended in fracturing the solid medium. It 
was also shown that the established method of asymptotic 
expansion in the small parameter is equally applicable to 
study other small effects (e.g., fluid inertia) on the otherwise 
toughness-dominated solution. Consequently, Garagash [16] 
presented the scaling for the fracture propagation driven by 
inertial, unidirectional flow of viscous fluid, and evaluate 
the effect of inertia. Garagash [16] examined the inertia and 
viscosity parameter effects separately in the other words 
without considering FVII effect on the hydraulic fracture 
process. In this paper, the net pressure in the fracture, the 
crack opening, and the fracture half-length are obtained with 
considering the FVII effect on the toughness-dominated 
solution. The modified perturbation method is proposed here 
for evaluating the FVII effects on the otherwise toughness-
dominated solution of a plane-strain hydraulic fracture.

2- MATHEMATICAL FORMULATION 
2-1- Problem definition

We consider the propagation of a plane-strain crack of 
length ( )2 t , emanating in an impermeable, linear elastic 
rock characterized by Young’s modulus E , Poisson’s ratio υ
, and toughness ICK , see Figure1. An incompressible fluid of 
viscosityµ is injected at the center of the fracture at a rate 
( )Q t , which is induced to internal fluid pressure ( ),fP x t  in the 

surfaces crack. Also, the crack is loaded by far-field confining 
stress  0σ . The Linear Elastic Fracture Mechanics (LEFM) 
theory is adopted to obtain the net pressure in the fracture
( ) ( ) 0, ,fP x t P x t σ= − , the crack opening ( ),w x t , and the fracture 

half-length ( )t , where t  is the time and x  is the position 
along the crack.

The analysis assumptions and boundary conditions were 
considered according to the Reference [16].

2-2- Governing equations
The governing equations of the model consist of a 

propagation criterion, an elasticity equation, and the 
lubrication equation. These equations can be expressed in 
terms of the half of the crack, 0 x≤ ≤  , the crack opening, 
the average fluid velocity, and the fluid net pressure by 
accounting for the problem symmetry as follow:

2-2-1- Fluid mass:
The fluid flow in the fracture is governed by continuity of 

mass and momentum. Global fluid continuity requires the 
injected fluid volume ( )V t to be equal to the fracture volume; 
hence:

0 0
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2

t

x
wdx wv wdx V t V t Qdt

t
∂

= = =
∂ ∫ ∫ ∫

 
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2-2-2- Fluid momentum:
The unidirectional laminar fluid flow inside the crack is 

described by the momentum balance equation [14, 17].
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2-2-3- Elasticity equation
Crack opening is related to the net pressure on the crack 

by an integral equation of the linear elasticity theory [18].
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2-2-4-. Fracture propagation
The LEFM propagation criterion for a mode I fracture, 

I ICK K= , is expressed as the tip asymptote of the crack opening 
[19]:
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Where E ′  is the plane strain elastic modulus.

2-3- Dimensionless Formulation
To facilitate solution of the set of equations (1- 4), let us 

introduce the following scaled and normalized quantities: the 
coordinate ( ) [ ]0,1x tξ = ∈

, the crack opening, the net pressure, 
the crack half-length, and the fluid velocity as follows:
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Figure 1. Sketch of a plane-strain fluid-driven fracture. 
  

Fig. 1. Sketch of a plane-strain fluid-driven fracture.
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It is noted that “bar sign” corresponds to the normalized 
quantities.

Using the above transformations, Equations (1- 4) can be 
re-written in an alternative form as follows:

•  Fluid mass
1 1

2
0

1

1d , d ,
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•	 Fluid momentum
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•	 Elasticity equation and fracture propagation
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The terms TΦ  and TΨ  are time-transient parts in 
the continuity Equation 6 and momentum Equation 7, 
respectively.

Also, three dimensionless parameters kG , ìG , and 
ñG  in 

Equations 7 and 8 are expressed as:
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For more expressions of these dimensionless parameters 
in the three scaling, identified as the toughness scaling kG 1=
, the viscosity scaling ìG 1= , and the inertia scaling ñG 1= , 
refer to [16].

Consequently, tV V  and tL L in continuity Equation 6 
and momentum Equation 7 are the corresponding constant 
exponents, and the time derivative operator to ( ).t t∂ ∂  in 
Equations 6 and 7 can be replaced by
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Where over dot denotes the differential with respect tot .

3- BASIC IDEA
In this work, the modified perturbation method is suggested 

to find an approximate solution to the problem of plane-strain 
hydraulic fracture propagating in an impermeable brittle 
rock. The perturbation method is applicable if dimensionless 
parameters can be considered as “small” quantities. Since 
there are three different dimensionless parameters kG , ìG  and 

ñG , thus we assume:
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4- TOUGHNESS-DOMINATED REGIME: CONSTANT 
INJECTION RATE 

We assume the case of the toughness-dominated regime in 
a fracture, which results in Equation 6 kG 1= . Consequently, 
the solution in the toughness scaling is dependent on two 
parameters, the dimensionless viscosity ìG = , and the 
dimensionless inertia ñG = .

According to the toughness scaling, Equation 11 can be 
reduced as follows:

m n
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Where { } { }[0,0] [m,0] [0,n] [m,n], , , m n N= 1,2,...f f f f →∀ ∧ ∈ are zero-viscosity-
inertia term, the term, m th-order of small viscosity and 
zero-inertia, n th-order of small inertia and zero-viscosity, 
and [m,n]f  are m  and n th order of the interaction term, 
respectively. Substituting Equation 12 in Equations (6-8) and 
organizing it based on coefficients of 1, ,  , , in the 
toughness scaling, gives:

•	 Zero- viscosity and inertia,
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•	 Small viscosity,
 [1,0]( )f ξ
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•	 Small inertia, [0,1]( )f ξ
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•	 Interaction term, [1,1]( )f ξ
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The infinite set of integro-differential equations, 
Equations(13-16), is solved recursively, and for the sake of 

brevity, the details of the solution are not presented here.
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[0,0] [1,0],f f and [0,1]f was solved similar to zero-viscosity and 
inertia solution, the first-order terms of small viscosity, and 
first-order term of small inertia solutions, respectively in the 
literature of Garagash (2006) [16]. Because of the complexity 
of higher term { } { }[m,0] [0,n], m n N= 2,3...f f →∀ ∧ ∈  and interaction term
{ } { }[m,n] m n N= 1,2,3...f →∀ ∧ ∈ , we have to implement numerical 
method.

The general solution in toughness-dominated regime 
can be simply obtained via Equation 12. Such as, for the 
dimensionless opening we have:
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5- RESULTS AND DISCUSSION
In this research, the general solution of the problem is 

presented considering the interaction between the inertia 
and the viscosity parameters on the toughness scaling. If 
one of these parameters is considered zero, then there is 
no interaction between the parameters and the problem 
solution in this research leads to the Garagash’s solution in 
the reference [20].

Figures 2 and 3 showed the comparison between the 
normalized opening, and the net pure pressure, taking into 
account the interaction effect between the viscosity and inertia 
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parameters (this study) and without the interaction term 
[16]. On the other word, considering the interaction effect, it 
increases the size of the scaled opening and the reduction of 
the length of the crack.

 Considering the effects of interaction term increases the
normalized opening and reduces the length of the crack.

Some of the outcomes of this research are as follows:

5-1- Dimensionless fracture length
Figure4 shows the contour of the crack half-length in 

terms of different values of viscosity and inertia parameters.
According to this figure, the crack half-length increases 

with the increase of the inertial parameter in the smaller 
values of the viscosity parameter, and change of crack half-
length may become almost negligible for 0.0275 .   For a 

larger value of the viscosity parameter ( 0.0275>. ), the 
crack half-length decreases as the inertia parameter becomes 
greater.

It can also be concluded that the effects of fluid viscosity 
in the hydraulic fracture injection process are greater than the 
effects of the inertial parameter. However, ignoring the effects 
of inertia can even cause about 300% change in the solution 
under a particular situation.

5-2- The net scaled fluid pressure on the crack surface
Considering the FVII, it usually causes a maximum value 

to occur in the process of the pressure-space curve (Figure 
14). As shown in Fig.ure 5, in a constant inertia, the difference 
of pressure at the tip and the inlet increases as the viscosity 
increases.

Increasing the inertia parameter, in the smaller amounts 
of viscosity, reduces the pressure nearby the injection point 
and the middle of the crack and increases the pressure around 
the tip of the crack. On the other hand, the gradual increase 
of viscosity, the pressure increases at the inlet and decreases in 
the region of the tip of the crack. These results are due to the 
existence of the interaction term   and  . Undoubtedly, the 
description of the mechanism of interaction between these 
two parameters seems very complicated and requires more 
research and laboratory testing with this attitude.

5-3- The Normalized opening of crack
Figure 6 shows the trend of opening, Ω = γΩ  , for various 

values of { }0, 0.01,0.02, 0.03, 0.04=  and { }0, 0.1,0.2,0.3,0.4,0.5,0.6, 0.8=

, with considering FVII with third order ( )3 3O ,  . As shown, 
increasing the inertia of the fluid with zero-viscosity the 
crack may tend to develop a tear-drop shape, whereas, with 
increasing crack viscosity, the droplet form is released.

6- Conclusions
In this research, the effect of interaction of viscosity and 

inertia parameters on the net pressure in the fracture, the crack 
opening, and the fracture half-length of crack fluid in brittle 
rocks for different values of viscosity and inertia parameters 
for two-dimensional KGD crack in toughness regime using 

 

 

Figure 2. Comparison of normalized opening,  , considering the effect of interaction between viscosity and inertia 
parameters (this study) and without interaction effect [16]. 
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Figure 3. Comparison of net fluid pressure,  , considering the interaction effect between the viscosity and inertia 
parameters (this study) and without interaction term [16]. 
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Fig. 2. Comparison of normalized opening, Ω , considering the 
effect of interaction between viscosity and inertia parameters 

(this study) and without interaction effect [16].

Fig. 3. Comparison of net fluid pressure, Π , considering the 
interaction effect between the viscosity and inertia parameters 

(this study) and without interaction term [16].

 

Figure 4. contour of the crack half-length in terms of different values of viscosity and inertia parameters 
  

Fig. 4. contour of the crack half-length in terms of different values 
of viscosity and inertia parameters
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modified perturbation method was investigated. The results 
are briefly noted in the following:

The half-length crack decreases with increasing viscosity 
and the decreasing trend increases with increasing inertia 
parameter. In greater amounts of viscosity, an increase in 
the inertia parameter leads to a decrease in the half-length 
of the crack. On the other hand, the lowering effect of the 
viscosity parameter is greater than the inertia enhancing 
effect. Therefore, it can be concluded that the effects of fluid 
viscosity in the hydraulic fracture injection process are more 
than the effects of the inertial parameter with the assumption 
that the flow is laminar. 

Increasing the inertia parameter, in the smaller amounts 
of viscosity, reduces the pressure nearby the injection point 
and the middle of the crack and increases the pressure around 
the tip of the crack. On the other hand, the gradual increase 
of viscosity, the pressure increases at the inlet and decreases 
in the region of the tip of the crack. These results are due to 
the existence of the interaction term   and . Increasing 
the inertia of the fluid with zero-viscosity the crack may tend 
to develop a tear-drop shape, whereas, with increasing crack 
viscosity, the droplet form is released.
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