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ABSTRACT: Flexural buckling is one of the buckling limit states in columns, which have at least one 
symmetric axis. Due to the lack of analytical solution for the differential equation of deformation of a 
non-prismatic column, its flexural buckling load has been determined by numerical methods, resulting 
in approximate solutions. This research aims at the analytical evaluation of non-sway in-plane flexural 
buckling of gabled frames. The equilibrium and differential equations were simultaneously used in 
the elastic flexural energy, consequently the characteristic equation is achieved. The effective length 
coefficient can be determined only with having two geometrical parameters of a gabled frame, using 
the relevant graph. Accurate results and simple use of the drawn graphs are among the benefits of the 
introduced method. 
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1- Introduction
Stability analysis of tapered columns is difficult and 

researchers often use numerical and approximate methods 
to solve this problem. The old documented solutions for 
determining the critical load of tapered columns go back 
to early 19th century by Timoshenko [1], Morley [2] and 
Dinnik [3]. In all of these solutions, the tapered columns were 
approximated by stepped columns resulting in approximate 
solutions. The critical load calculation of tapered columns by 
Bessel’s functions was first studied by Gere and Carter [4]. 
Iremonger solved the differential equation of deformation of 
a tapered column for arbitrary boundary conditions by finite 
difference method [5]. Karabalis and Beskos used Finite 
elements to obtain numerical solutions [6]. Comprehensive 
review of stability of the tapered columns has been separately 
done by Ermopoulos and Banerjee [7, 8]. Williams and 
Aston [9] studied several columns with variable web and 
flanges under concentrated loads. Non-prismatic columns 
were analyzed for buckling based on vibration modes, 
energy approaches and the Principle of Stationary Potential 
Energy by Rahai and Kazemi [10]. Bradford and Valipour 
[11] introduced shape functions for beams with elastic bases 
using the Principle of Virtual Work. Assuming the column 
displacement function as an exponential function of the 
summation of a power series, Darbandi et al [12] studied 

the tapered columns buckling by a perturbation method. 
Buckling and vibration of tapered members were studied by 
Taha and Essan using differential quadrature method [13]. 
In this method, the values of the first and higher derivatives 
of the answer function in a point are assumed to be equal 
to the summation of the weighted values of that function in 
other sample points. Ruocco et al. developed the Hencky 
bar-chain model for the buckling analysis of non-uniform 
columns [14]. In this model, a column is divided into some 
rigid columns; each two adjacent rigid columns are connected 
into each other with a rotational spring. The buckling load 
is determined by the equality of determinant of the stiffness 
matrix to zero. Nikolic´ and Šalinic performed the buckling 
analysis of columns with continuously varying cross-sections 
[15]. They used a rigid multi-body approach, which was 
similar to Hencky bar-chain model, but there were rotational 
and lateral translational springs between each two adjacent 
rigid columns.

2- Methodology
The structures shown in Figs. 1 and 2 have a concentrated 

force (P) applied vertically downwards to the top of each 
column. By assuming linear-elastic behavior in bending for 
a segment of the two buckled columns in Fig. 3, their lateral 
displacement functions, v, can be expressed by the following 
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differential equations (the equations numbers of frame (II) 
are indicated with “prime” indication):
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 Where E and Ic are the elasticity modulus of the members 
and the inertia moment of the bending axis of the column, 
respectively. Other parameters are shown in Fig.1. About 
the external work in the buckling and its equality with the 
summation of the elastic energy the next equation can be 
written:   
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Where h∆  and Uc are the displacement of the column 
tip, the total elastic energy of the columns and the beam, 
respectively (Ub is the total elastic energy of the beams). The 
total elastic energy of the columns can be written as:
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By integration by parts and considering the boundary 
values, Uc can be determined:
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Figure 1. The loadings, buckling mode configuration and the free body diagrams of studied gabled frames (Frame (I&II)) Fig. 1. The loadings, buckling mode configuration and the free body diagrams of studied gabled frames (Frame (I&II))

Figure 2. A pined-pined tapered column with its end sections (left)- relevant graph (right)  Fig. 2. A pined-pined tapered column with its end sections (left)- relevant graph (right) 
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On the other hand ∫=
l
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0
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bcext UUW +=  , it can be resulted that θVlUb =  and   for 

structures (I) and (II), θ)( 0 VlMUb +=  respectively. Then 
by some mathematical calculations next two equations can 
be written: 
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After solving Eqs. (1) and (2) it can be realized that the 
rotation of the tip of the columns (θ ) and Mo (base bending 
moment in Fig. 1) is dividable by “V“, besides . lv '−=θ  
Therefore:

"vEIVxPvM cc −=−=       (1) 

"0 vEIMVxPvM cc −=−−=                                    (1') 

bc

l

hext UUvPPW +=







= 

0

2'
2
12)(2                (2) 

( ) ( )dx
EI

vEIVxPvdx
EI

MMU
l

c

c
l

c

cc
c 

−−
=


=

00

"             (3) 

( ) ( )dx
EI

vEIMVxPvdx
EI

MMU
l

c

c
l

c

cc
c 

−−−
=


=

0

0

0

"              (3') 

( ) dxvVxPvU
l

c  −−=
0

"  

VldxvPU
l

c −= 
0

2'                                        (4) 

( ) dxvMVxPvU
l

c  −−−=
0

0 "  

( ) +−=
l

c MVldxvPU
0

0
2'                          (4') 

 
 =−+=
s

b
b Vldx

EI
xFVVlU

0

2sin)(                          (5) 

  ( ) +=
−++

=
s

b
b VlMdx

EI
xFVVlMU

0
0

2
0 sin)(              (5')       

)6(                                         
VV

vPf l −==
')(Structure (I):    

Structure (II): ( )
VV

vPg l 
−==

'
1

, ( )
V
MPg 0

2 =    (6')             

The final equations are the characteristic equations:
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3- Results and Discussion
Having the characteristic equations drawing the required 

graphs will be possible. The graphs are drawn for effective 

length coefficient. By the equation  2
0

2 )/( lKEIPcr γπ=
, and solving the characteristic equations, intended graphs 
could be drawn.

 
3.1-Example

The effective length coefficient of a pined-pined column 
is requested. Its two end sections are shown in Figure 1.   

3.2-Solution 
By using the graph of Figure 1 can easily solve the 

problem. The hinged base at the bigger end (column top 
section) is similar to a very long oblique beam ( ∞→s ) in 
Figure 1. By extrapolating the top curve: 66.0=γK

4- Conclusion
In this article the effective length coefficient of tapered 

columns in gabled frames is calculated. The introduced 
method is analytic and the use of the drawn graphs is very 
simple. 
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