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Evaluation of the effect of shape of granular materials on uniaxial compressibility 
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ABSTRACT: Granular materials used today in many engineering projects, such as rockfill dams 
and railways, have a wide variety of shapes. This shape variation ranges from very sharp to perfectly 
rounded. The shape of the aggregates affects the mechanical properties of the grain, including fracture 
strength and internal friction angle. As a result, the mechanical behavior of the mass of granular 
materials depends on the shape of the grains. In order to investigate the effect of this property, different 
types of grains in the shapes of spheres, cylinders, cubes and pyramids, which include a wide range of 
shapes of natural aggregates, were made artificially in size range of 1.5 to 2.0 cm. Small-scale uniaxial 
compressibility tests were performed on each of the grain shapes under the same conditions including 
initial porosity ratio and maximum stress and after each experiment, the stress-strain behavior and the 
amount of breakage were obtained using the Hardin breakage factor. Then, the results were evaluated 
using an analytical model proposed by McDowell et al. based on the law of conservation of energy. 
This model has 7 parameters that depend on the initial conditions of the grains, material, shape, size 
and fracture strength of the grains. Comparison and evaluation of the results indicates the ability of 
the analytical model to predict the compressibility behavior of pyramidal grains. As the grains become 
angular, the compressibility and breakage of the materials increase. Also, with increasing the fracture 
surface energy of the material, the effect of shape on compressibility decreases.
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1- Introduction
Grain shape is an important factor affecting the mechanical 

behavior of granular materials used in rockfill dams, railway 
ballast and wherever these materials are subjected to high 
stresses. Generally, granular materials are categorized into 
two total shapes, angular and rounded. Angular materials 
are obtained through the blasting of quarries while rounded 
materials are obtained through river beds. This physical 
property influences mechanical characteristics such as 
compressibility, fracture strength, distribution of contact 
forces and friction between the grains [1, 2].

Previous laboratory researches mainly focused on 
comparing the behavior of granular materials with different 
shapes of rounded and angular [3, 4]. Whereas the shape of 
the grains was not applied as an independent parameter in 
the constitutive equations of the grains and its effect was not 
evaluated parametrically. 

In this research, the model proposed by McDowell et al. 
[5] is used to evaluate the uniaxial compressibility behavior 
of granular materials in different shapes. To ensure the 
applicability of this model, uniaxial compression tests are 
performed on artificial granular materials that are made in 

four different shapes of sphere, cylinder, cube and pyramid but 
with the same volume. After evaluating the laboratory results 
with the above-mentioned analytical model and performing 
similar experiments on natural materials scaled with artificial 
granules, the compressibility behavior of granular materials 
is evaluated.

2- Methodology
2- 1- Analytical equation

In order to investigate the mechanical behavior of the 
granular materials mathematically, a constitutive equation 
needs to be used. Different forms of equations in terms of 
energy, fracture mechanic and critical state were proposed 
so far [6]. Each of these relations has its own advantages 
and disadvantages. But there is an important point that these 
relations did not take into account the grain shapes as an 
independent parameter. For this purpose, to apply the effect 
of shape on the behavior of granular materials, the model 
proposed by McDowell et al. (1996) is used [5]:
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q is the deviatoric stress, P’ is the isotropic stress, δεp
q 

and δεp
v are the increments of shear plastic and volumetric 

plastic strains, respectively. Γ is the fracture surface energy 
of the material, Vs is the total volume of the grains, ds is the 
change in the side surface of the grains due to fracture and M 
is a parameter dependent on the friction of the material. Using 
the statistical theory of grain strength, proposed by Weibull 
(1939) [7] and fractal theory [8], the final form of the uniaxial 
compressibility equation of the granular materials will be as 
follows [5]:
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peδ is the increment of void ratio, D is the fractal 
dimension, m is the Weibull modulus, µ is the coefficient 
dependent on friction, σ0 is the characteristic strength and Ps 
is the survival probability of the materials and β is the shape 
factor. The behavior of the model depends on the value of 
0.5×m(D-2)-1 which is named as convexity coefficient. 
Experimental results indicate that the convexity coefficient 
should be greater than zero.

2- 2- Experimental tests
Reactive powder concrete (RPC) can be considered as a 

suitable alternative material for modeling high-strength rock 
aggregates. Figure 1 shows the shape of the RPC grains.

Granite grains in the same size range as RPC grains 
(small scale) were prepared, either. It should be noted that 
to characterize the shape of the grains, the sphericity factor 
(S) defined by Cho et al. (2006) was used [1]. Loadings were 
performed in three forces of 4, 8 and 16 ton in a cylindrical 
mold with a diameter of 22.5 cm and height of 9 cm. The 
initial void ratio was 0.80 and constant at all tests. The values 
of force and displacement were recorded by a data logger and 
grading tests were performed after each test to measure the 
Hardin breakage factor [9].  

3- Results and Discussion
The results of compressibility tests on RPC and granite 

grains are indicated in Figure 2. 
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Fig. 1. The shape of grains made of RPC

 

 

 

 

 

 

 

 
Figure 2. Comparison of results of experimental tests and analytical model in the size range of 1 to 2.5 

cm 
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Fig. 2. Comparison of results of experimental tests and 
analytical model in the size range of 1 to 2.5 cm 
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It is important to note that in both RPC and granite 
specimens, the diagrams obtained from the analytical 
relationships were in very good agreement with the laboratory 
results (R2=0.98). Granite grains are closer to pyramidal RPC 
grains in terms of sphericity index, but due to their high 
fracture strength, their compressibility decreases compared 
to the pyramids and tends towards the compressibility of the 
cubes.

Table 1 shows the breakage factors and the applied energy 
density for all experiments. 

It is observed that with decreasing the sphericity index, 
the amount of applied energy and breakage that occurred in 
RPC aggregates has increased. The amount of this increase in 
breakage is higher for pyramidal grains than for other grains.

4- Conclusion
With decreasing sphericity, the amount of breakage and 

compressibility of materials has increased.
With increasing the fracture surface energy, the effect of 

shape on compressibility decreases.
McDowell analytical equation only considers the uniaxial 

compressibility behavior of pyramidal grains (dmax=2.5cm) 
with acceptable accuracy. However, for other grains with 
high sphericity, the development of a 3D model is necessary 
to predict the behavior of these grains.
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Table 1. Breakage values and energy applied to RPC and granite grains
Table 1. Breakage values and energy applied to RPC and granite grains 

Stress (MPa)  Sp Cy Cu Py Gr 

1.1 
BH 1.6% 1.6% 1.7% 2.4% 1.7% 

E(KJ/m3) 24.6 28.0 47.3 76.3 94.7 

2.1 
BH 4.1% 2.6% 4.9% 6.8% 3.9% 

E(KJ/m3) 79.7 72.1 155.1 247.6 216.3 

4.2 
BH 5.8% 7.6% 9.4% 16.3% 7.6% 

E(KJ/m3) 272.2 322.3 543.5 784.6 500.0 
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