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ABSTRACT: The purpose of this paper is to assess the seismic fragility and residual capacity of the 
reinforced concrete frame (RC) with masonry infills subject to mainshock/aftershock sequences in the 
far- and near-fields. In conventional incremental dynamic analysis (IDA), only the effect of the main 
shock is considered in the analysis, while the double incremental dynamic analysis (D-IDA) method 
which is used in this paper, considers the aftershock effects. Double incremental dynamic analysis 
approach is used, based on the combination of the mainshock(MS) at different intensities with a set of 
aftershocks (AS) scaled in amplitude with respect to peak ground. In this study, 20 near-field records 
and 20 far-field records were selected. In each analysis, a same record has been used for the main 
shock and after shock. The fragility curves of the intact and pre-damaged frames have been prepared 
for the records using fiber modeling in OpenSees software. Also, based on the results obtained from the 
incremental dynamic analysis, the frame residual capacity diagrams are defined and the infilled frame 
response is compared with the bare frame at different intensities of the main shock. According to the 
results obtained for infilled, the seismic fragility of the reinforced concrete frame is reduced due to the 
mainshock and aftershock. Also, the damages and losses economic of the structure under moderate 
earthquakes are reduced. According to the fragility curves, when only 100% collapse occurs in the bare 
frame, the probability of the frame collapsing with the infill wall at the same intensity as PGA (maximum 
ground acceleration) for near- and far-field earthquakes records is significantly reduced.
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1- Introduction
Due to the variable behavior of infilled frame and the 

methods of designing and modeling, many studies have been 
conducted in the past decades on the effects of infills in the 
frames. Dolsk and Fajfar[1]  presented a relationship between 
displacement demand and seismic intensity for the evaluation 
of infilled concrete frames. Mondal et al.[2]  applied the 
effect of openings by the reduction factor. Mainshocks (MS) 
can cause many aftershocks (AS). In this regard, Di Trapani 
et al. [3] investigated the influence of infilled frames on 
seismic fragility of RC structures under the sequence of MS/
AS using the proposed double incremental dynamic analysis 
(D-IDA) method. The results of Di Trapani et al. [4] research 
on the 4-storey structure showed that masonry infills provide 
additional capacity to resist MS and AS ground motions. 
Yaghmaei et al. [5] investigated the influence of sequential 
earthquakes on the fragility curves for different damage 
states and showed that the well-known Omori’s law could be 
considered a suitable tool for after shocks generation.

The amount of damage caused by the earthquake 
depends on many factors such as fault location, soil type 
and earthquake record characteristics as well as dynamic 

properties of the structure. Therefore, in this paper, the effect 
of near- and far-field records as well as the presence of 
aftershocks in the behavior of bare frame and infilled frame 
have been studied using standard and double incremental 
dynamic analysis. A 3-storey RC frame has been selected 
for numerical simulations.Results provide fragility curves of 
bare and infilled frame with different levels of MS intensity. 
Residual capacity and AS loss diagrams, illustrating the 
reduction of median collapse intensity as a function of MS 
intensity, are finally provided for bare and infilled frames for 
far- and near-field records.

2- Material and Method
2- 1- Description of Frames

A 2DRC frame with 3-storey and 3-bays has been 
investigated in this study. Lengths of bays are equal to 5.5 
m and story heights are 3 m except 3.5 m for the first story. 
The infilled frame was arranged with clay hollow masonry 
blocks having a thickness of 17 cm with an existence of 33% 
opening. To consider the effect of existing openings, New 
Zealand code [6] equation was used, which the reduction 
factor equals 0.5 when there is 33% opening in the infilled 
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frame. The lateral force resisting system is an intermediate 
moment frame and the type of soil is considered as II. Dead 
and live loadsof stories were considered 600 kg/m2 and 200 
kg/m2, respectively. These parameters were considered 550 
kg/m2 and 150 kg/m2, respectively, for the roof story. Dead 
load was considered 100 kg/m2 for 17cm thick walls. The 
Concrete02 model was used for concrete fibers. Effects of 
concrete confinement are considered by Mander et al. [7] (see 
Table 1). Parameters used for concrete in tensions were ft=2.0 
MPa (tensile strength) and Et= 1500 MPa (tension softening 
stiffness). Steel rebars were modeled as spread layers with 
the Steel02 material model. The elastic Young’s modulus was 
Es= 210,000, while the hardening ratio was b=0.01.

In this paper, the masonry infill walls are modeled as 
an equivalent compressive strut. This strut is diagonal and 
connects the opposite joint of the frames with a length equal 
to the diameter and the width 0.2 times of frame diameter. 
The hysteretic behavior of the struts is considered by the 
parameter λ, which regulates the ratio between elastic and 
inelastic slopes of the unloading branches. The parameter λ 
is set equal to 0.07 for the equivalents struts and 0.1 for the 
concrete elements.

2- 2- Research Methodology
Incremental dynamic analysis is generally thought to 

assess undamaged structures undergoing a seismic event 
for the first time. The standard IDA procedure is modified 
by performing a double incremental dynamic analysis in 
order to consider different MS/AS combinations. The steps 

to carry out D-IDA provide first defining ground motions 
as an assemblage of two signals, namely the MS and the 
AS, interspersed with a decay time sufficient to bring 
the structure back to static condition. MS and AS ground 
motions are taken from the same set of spectrum compatible 
accelerograms. Incremental dynamic analysis is performed 
using a MS ground motion having fixed intensity, each time 
combined with Aftershocks scaled in amplitude. IDAs are 
then repeated by changing the MS intensity and associating 
the same set of scaled AS ground motions. The double scaling 
of both MSand Aftershocks allows deriving fragility curves 
depending on MS intensity, and can be used to define residual 
capacity diagrams reporting the average residual capacity of a 
structure as a function of MS intensity.

3- Results and Discussion 
Based on Figure 1, the fragility curves of the infilled 

frames are significantly shifted to the right for far- and near-
field earthquake records which confirms the significant 
reduction of seismic fragility due to the presence of infills.

In Figure 2, the medium seismic fragility curves for intact 
and pre-damaged frames for bare and infilled frames are 
compared only under far and nearfield earthquake records. 
It is observed that for the bare frame, the structure collapses 
faster under near-field earthquakes. It can be observed that 
the behavior of infilled frame is different against nearfield 
earthquakes so that it collapses later than far field earthquakes. 
This issue can be related to the different frequency content 
in the near and far field earthquakes. In fact, as the system 
of structures becomes stiffening action due to the infills, 
earthquakes that have a richer frequency content at high 
frequencies have had a greater impact on the structure under 
study. Also, the average seismic fragility for the pre-damaged 
frame is less than the intact frame due to the damage caused 
by the main shock.

Aftershock capacity loss is assessed by diagrams in 
Figure 3 showing the different normalized capacity losses 
of bare and infilled frames in terms of average collapse 
PGA. Residual capacity loss is almost the same for bare and 
infilled frame up to an MS intensity of0.10 PGA. Beyond 
this point, the bare frame loss curve significantly diverges 
from the infilled one; achieving total residual capacity loss 
at 0.3054 g MS and 0.3082g PGA, respectively, for near and 
far field earthquake records (collapse in the mainshock). In 
correspondence to the same point, the bare and infilled frame 

Table 1. Strength and strain of concrete fiber section
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maintains 95% and 97% of the intact capacity, respectively. 
Therefore, the structure subjected to far field earthquake, 
about 2.2% more than near field earthquake, can maintain its 
capacity compared to the undamaged condition.

4- Conclusion
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field earthquake. According to the results of fragility curves 
subjected to far-field and near-field earthquake records, 
observed that collapse probability of 100% of the bare frame 
corresponded to 15% and 2.2% of collapse probability for the 
infilled frame, respectively, which indicates the effective role 
of masonry infilled in increasing lateral stiffness. The IDA 
curves of the bare and infilled frame show that the residual 
drift subjected to near field earthquake is about 30% higher 
than far field earthquake records.

Due to the limitation in the number of selected models in 
this paper, it is recommended to perform additional analysis 

with a larger number of models to complete the results of the 
present article. It should also be noted that due to the high 
volume of calculations, the effects of the vertical component 
of the earthquake have not been considered in the analysis.
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Fig. 3. Aftershock capacity loss diagrams:
a) Far field earthquake; b) Near field earthquake
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