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ABSTRACT: This paper evaluates the vibration of M-DOF systems by calculating the natural 
frequencies and mode shapes. The introduced method is established on the base of the node concept, 
which is the point of a mode shape with zero displacement. In this method, a system with two or more 
degrees of freedom is transformed into two or more isolated systems with one- DOF. Those systems 
are isolated in node places and vibrate with the same frequencies in every mode. Each spring located 
between two adjacent lumped masses will be converted to series combination of two separated springs. 
The stiffness of the first spring is equal to the effective stiffness of the two series separated springs. The 
proposed method provides a good physical understanding about the concept of vibration modes. Besides, 
this method is accurate and sometimes is simpler and quicker than the common method.
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1- Introduction
Vibration modes and their frequencies are important 

subjects in the dynamic of structures and the relevant 
references [1]. Namjooyan et al. [2] obtained a new relation 
for the empirical period time of moment frames and evaluated 
the accuracy of the offered equations in Iranian Standard 
No. 2800 [3]. Ahmadi Danesh and Rafiee [4] evaluated the 
upper modes effects on the behavior of tall buildings. The 
studied buildings were 5, 12, 18, 30 and 50 story buildings. 
They realized that the upper modes are more effective on 
the upper and middle stories of fairly tall (12&18 story) and 
very tall (30&50 story) buildings, respectively. Do Hyun 
Kim and Ji Young Kim [5] by field measurement and FEM 
determined the natural frequencies of the three first modes 
of multi-story reinforced concrete buildings with various 
structural systems. They observed that the value of concrete 
elasticity modulus, the existence of non-structural members 
and flexural stiffness of slabs have effects on dynamic 
parameters. The Modified Energy Method was employed for 
the dynamic analysis of SDOF by Jalili Sadrabad et al. [6]. 
In this method, potential, dissipation and kinematic energy 
were defined in accordance with spring, dissipation and 
inertia forces. This approach was done by integrating two 
sides of the motion equation of SDOF, accordingly “dx” was 
written as “dx=v(t)dt”. In this way, energy equations were 
converted into definite integrals in the time domain.

In the literature review [1, 7-9], the mass-spring model 

of a shear-building structure must firstly be drawn for 
its vibration evaluation. Lumped masses and springs are 
equivalent of stories masses and shear stiffness between 
stories, respectively. By making mass and stiffness matrices 
and doing some mathematical operations, characteristic 
matrix and characteristic equation could be obtained. 
Frequencies of modes are the roots of the characteristic 
equation. 

In almost all the researches, frequencies and relevant 
shape modes were calculated by Eigenvalues Problem and 
characteristic equation. Here, this problem is solved by a 
new and simple method and on the base of physical primary 
concepts of mass, spring and node of vibration. To enter the 
main text, present some concepts that is suitable: 

Rigid mode: One of the vibration modes of unstable 
structures in which all the masses have similar movements.

Series and Parallel springs: Two or more springs are 
said to be in series when they are connected end-to-end or 
point to point and it is said to be in parallel when they are 
connected side-by-side. 

Node: In mode shapes, point(s) of the system which has 
(have) no movement is (are) node(s) of vibration.

2- Methodology 
2- 1- Shape modes and frequencies in 2-DOF Unstable 

systems 
 This system has no support, thus is unstable and has 

rigid mode (Figure 1).
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2- 1- 1- Rigid mode
In this mode the spring has no deformation consequently, 

its mode shape is 
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2- 1- 2- non-rigid mode 
According to the node concept, a point is considered 

between two masses. In this mode, the movements of masses 
are against each other, therefore, the shape mode can be 
written as
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A support can be imagined in the location of the node, 
accordingly each of the masses is connected to a rigid support 
via separated springs, “K1” and “K2” (Figure 1). Thus the 
frequency of the second mode will be equal to:
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Figure 1. Dividing the primary spring (left) into two adjusted series springs (K1&K2) from the node location (right) 
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2.2 Shape modes and frequencies in 2-DOF Unstable systems  
2.2.1 Stable systems which have a support  

              
Figure 2. A 2-DOF stable system that has a support (left), assuming node location and dividing the primary 

spring into K21 and K22 (right) 

    This system is not unstable; thus, rigid mode will not form. A suitable location must be assumed as a node to 
determine the shape modes and corresponding frequencies. Between the masses is that location (Figure 2). 
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where
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Top equation has two roots for “K21”, each of them must 
be used for a mode. Then the value of “K22” will be obtained. 
Therefore shape modes and frequencies can be determined. 
Other systems with upper DOFs are evaluated in the main 
text.

3- Results and Discussion
Example: 
The frequencies of the second mode of unstable (Figure 1) 

and stable systems (Figure 2) with the below characteristics 
are requested: unstable system: m1=1 kg, m2=2 kg, K= 1000 
N/m. stable system: m1=1 kg, m2=2 kg, K1=1000 N/m, 
K2=2000 N/m.
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2.2 Shape modes and frequencies in 2-DOF Unstable systems  
2.2.1 Stable systems which have a support  

              
Figure 2. A 2-DOF stable system that has a support (left), assuming node location and dividing the primary 

spring into K21 and K22 (right) 
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Solution with the proposed method:
Unstable system:
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Top equation has two roots for "K21", each of them must be used for a mode. Then the value of "K22" will be 
obtained. Therefore shape modes and frequencies can be determined. Other systems with upper DOFs are 
evaluated in the main text. 

3. Results and Discussion 

Example:  
    The frequencies of the second mode of unstable (Figure 1) and stable systems (Figure 2) with the below 
characteristics are requested: unstable system: m1=1 kg, m2=2 kg, K= 1000 N/m. stable system: m1=1 kg, m2=2 
kg, K1=1000 N/m, K2=2000 N/m. 
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The solution process shows that the application of the introduced method is very simple and fast and the results 
are exact.   

4. Conclusion  

   In this paper, frequencies and mode shapes of dynamic systems are calculated on the base of the node concept in 
vibration. Node is a point of a mode shape with zero displacement. The application of the proposed method is very simple 
and does not need complex physical and mathematical operations. The method is not approximate; thus, the results are 
exact.      
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