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ABSTRACT: The inconveniences of introducing and modifying the mesh grids in mesh-based 
numerical methods lead the researchers to meshfree methods, among which the RBF methods are 
probably the most interesting and powerful ones. In this research, the numerical solution of the steady-
state incompressible continuity and Navier–Stokes equations, and the standard k-Ɛ turbulence model 
was investigated in a 2D domain. The computational domain consisting of a 0.5 m×0.5 m square lid-
driven cavity was analyzed for five Reynolds numbers of 2.5×105, 5×105, 10×105, 2×106, and 5.5×106. 
The Multiquadric Radial Basis Function (MQ-RBF), as the most successful RBF, was employed with 
36 and 121 domain computational nodes to solve the PDEs. The velocity fields in two directions, the 
static pressure, the turbulent kinetic energy and the turbulent energy dissipation, were computed. A 
try–and–error algorithm was used for solving a set of non-linear equations, and the optimal values 
of the shape parameter c and the λ set coefficients were evaluated and discussed for each flow field. 
According to the results, assuming the independence of the values of the shape parameter c for each 
flow field at different Reynolds numbers, a predictable pattern can be obtained for the λ set for different 
Reynolds’ numbers in the studied range. These patterns with the predictor functions of the flow fields 
were compared to existing benchmark results of the finite volume method (ANSYS Fluent). The Nash-
Sutcliffe coefficients of 93-99% and RRSME of about %1 obtained from this comparison indicated the 
reasonable accuracy of the assumption concerning the independence of the shape parameter c of the 
Reynolds’ numbers, the repeatable patterns of the normalized λ set, and polynomial predictor functions 
in the MQRBF method for each flow field.
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1- Introduction
The fluid flow analysis using continuity equation, 

Navier-Stokes equations, and turbulence mathematical 
models has numerous applications in engineering sciences. 
The application of Multiquadric Radial Basis Functions 
(MQRBF) for solving Partial Differential Equations (PDEs) 
is one of the famous and efficient meshless methods. In 
MQRBF method, the PDEs solving procedure consists of 
estimating two important quantities: the shape parameter 
(c) and the set of unknown coefficients (λ) [1-3]. These two 
parameters are optimized when their resulting fields exhibit 
good accuracy compared to other numerical methods or 
experimental models. In solving the system of non-linear 
PDEs, including the transport equations, several shape 
parameters and the optimal set of coefficients must be 
estimated so that the solution complexity will be increased. 
In the present study, the set of the continuity equation, 
Navier-Stokes equations, and mathematical turbulence 
model (k-Ɛ model) are analyzed assuming incompressible 
steady-state flow conditions consisting of five transport 

equations including different flow parameters and some 
non-linear and high-order PDE terms. 

2- Methodology
The continuity and Navier-Stokes equations are applied 

for two-dimensional incompressible steady-state flow 
in isothermal conditions. Also, the k-Ɛ turbulence model 
with two transport equations is applied to analyze the flow 
turbulence parameters in high Reynolds numbers [4, 5]:
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In the above equations, x represents the component of the 

coordinate system in principal directions, u are the mean 

velocity vector components, ' '
i ju u is the Reynolds stress 

tensor,   and   are the density and dynamic viscosity, p  

is the static pressure, k is the turbulence kinetic energy, t

is the turbulent dynamic viscosity and   is the turbulent 
kinetic energy dissipation [6-8]. For solving the non-linear 
PDEs using MQRBF method, the following estimation 
function form is considered for all five domain parameters 
of the PDEs [9-12]: 
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where 1x  and 2x  are the components of the coordinate 
system, c is the shape parameter,   is the unknown 
coefficient, and n is the number of center points in the 
domain. The first and second-order derivatives of the main 
flow fields are derived, then the obtained MQ form of the 
derivatives are substituted in five transport equations (1 to 
4) which result in the system of non-linear equations. Due 
to non-linear terms in the system of equations, a 
combination of try and error and Newton methods will be 
employed as the solution procedure. The results are 
compared with the existing  benchmarks of the finite 
volume method using two well-known error criteria of 
Nash-Sutcliffe and Relative Root-Mean-Square Error for 
evaluating the computations accuracy. 

3. Results and Discussion 

The problem is solved for two cases of a lid-driven 
cavity benchmark with 36 and 121 center points and a 
sudden expansion problem with 342 center points. The 
results of the solved examples show that assumptions of 
independence of shape parameter c and predictability of λ 
coefficients are acceptable. Two predictor relations for λ 
coefficients regions based on the lid velocity U and 
Reynolds number are as follow in which the ia  coefficients 
are to be determined: 

3 2
3 2 1 0 3Max

Min Re Re Rea U a U aU a n = + + + =  (6) 

2
2 1 0 2Max

Min Re Rea U aU a n = + + =  (7) 

In most of the predicted flow fields, the results were found 
to be in good agreement with those of the FVM (ANSYS 
Fluent). The Nash-Sutcliffe coefficients of 93-99% and 
RRSME of about %1 indicated the reasonable accuracy of 
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In the above equations, x represents the component of the 

coordinate system in principal directions, u are the mean 

velocity vector components, ' '
i ju u is the Reynolds stress 

tensor,   and   are the density and dynamic viscosity, p  

is the static pressure, k is the turbulence kinetic energy, t

is the turbulent dynamic viscosity and   is the turbulent 
kinetic energy dissipation [6-8]. For solving the non-linear 
PDEs using MQRBF method, the following estimation 
function form is considered for all five domain parameters 
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where 1x  and 2x  are the components of the coordinate 
system, c is the shape parameter,   is the unknown 
coefficient, and n is the number of center points in the 
domain. The first and second-order derivatives of the main 
flow fields are derived, then the obtained MQ form of the 
derivatives are substituted in five transport equations (1 to 
4) which result in the system of non-linear equations. Due 
to non-linear terms in the system of equations, a 
combination of try and error and Newton methods will be 
employed as the solution procedure. The results are 
compared with the existing  benchmarks of the finite 
volume method using two well-known error criteria of 
Nash-Sutcliffe and Relative Root-Mean-Square Error for 
evaluating the computations accuracy. 

3. Results and Discussion 

The problem is solved for two cases of a lid-driven 
cavity benchmark with 36 and 121 center points and a 
sudden expansion problem with 342 center points. The 
results of the solved examples show that assumptions of 
independence of shape parameter c and predictability of λ 
coefficients are acceptable. Two predictor relations for λ 
coefficients regions based on the lid velocity U and 
Reynolds number are as follow in which the ia  coefficients 
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In most of the predicted flow fields, the results were found 
to be in good agreement with those of the FVM (ANSYS 
Fluent). The Nash-Sutcliffe coefficients of 93-99% and 
RRSME of about %1 indicated the reasonable accuracy of 
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In most of the predicted flow fields, the results were found 
to be in good agreement with those of the FVM (ANSYS 
Fluent). The Nash-Sutcliffe coefficients of 93-99% and 
RRSME of about %1 indicated the reasonable accuracy of 
the assumption concerning the independence of the shape 
parameter c of the Reynolds’ numbers, the repeatable patterns 
of the normalized λ set, and polynomial predictor functions in 
the MQRBF method for each flow field (Table 1).

4- Conclusions
In this study, the MQRBF meshfree method was examined 

for solving the governing equations of 2D incompressible 
turbulent steady flow in a lid-driven cavity benchmark 
problem by comparing the results to those of FVM (ANSYS 
Fluent). The main challenge is to find the appropriate shape 
parameters (c) and set of unknown coefficients (λ) for the 
selected number of center points. The hypothesis of shape 
parameters independence from Reynolds numbers and 
predictability of λ coefficients was validated and the high 
accuracy of results was indicated in addition to presenting 
some predictor polynomial relations for λ coefficients. The 
comparison between the results of the presented approach 
and those obtained by the FVM shows that the proposed 
technique may be applied to solve the PDEs of 2D steady 
turbulent incompressible flow.
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