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ABSTRACT:One of the common methods in controlling the seismic response of structures is the use 
of seismic isolators. Base isolations reduce the base shear as well as the relative displacement of the 
floors by increasing the period of the structure. Typically, extreme deformation of the base isolation 
level occurs due to severe environmental factors, which can lead to damage to the base isolations; As 
a result, there is a possibility of permanent deformation in the base isolation and also the collision of 
the structure with adjacent buildings. Therefore, to prevent damage to buildings equipped with base 
isolations due to severe ground motions, it is important to identify damage at the base isolations. In 
this study, assuming the linear behavior of the main structure, a proposed subspace-based method for 
identifying the stiffness of the base isolation with a limited number of sensors is presented. For this 
purpose, using the compression technique, the structure equipped with a separator with a large number of 
degrees of freedom (DOFs) is transformed into a two DOF structure; So that the stiffness associated with 
the first DOF in the reduced system corresponds to the stiffness of the Base isolation level in the original 
structure. Then, using the identified Markov parameters of the system, the reduced structural stiffness 
is identified. Numerical examples are used to evaluate and compare the performance of the proposed 
method. The results show that even in the presence of noises in the measured responses, the proposed 
method detects the amount of damage at the base isolation level with acceptable accuracy.
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1- Introduction
One of the acceptable strategies to ensure the promotion 

of safety and long-term performance of the structure is the 
use of control equipment to reduce the dynamic response of 
the structure under the impact of severe earthquakes [1-4]. A 
new approach to seismic design is moving towards reducing 
demand as an alternative to increasing capacity, and one way 
to achieve this is to use flexible devices at foundation levels 
to prevent the transfer of seismic energy to the structure [5]. 
By increasing the period of the structure, the base isolation 
reduces both the base shear and the relative displacement 
of the floors [6]. Large deformations caused by severe 
environmental factors such as earthquakes and winds at the 
base isolation level can lead to damage to them. Damage 
to the base isolation will significantly increase the rigid 
displacement of the structure; as a result, there is a possibility 
of residual deformation in the base isolation level as well 
as the collision of the structure with adjacent buildings [7]. 
Therefore, early detection of structural damage before it 
causes irreparable damage is essential. In this article, we try 
to identify a small part of the structure that includes the level 
of the base isolation. For this purpose, it is only necessary to 
measure and record dynamic responses in a limited number of 

related DOFs. This reduces the amount of measurement data 
and equipment required and, consequently, the time required 
for system identification calculations. As a result, it will 
save a lot of cost and time. Numerous damage identification 
methods have been [8]. Damage detection methods in large 
structures will always have several problems with increasing 
the number of DOFs and uncertain parameters [9-11]. One 
of the methods to overcome this problem is the substructure 
method [12]. In this research, a new substructure-based 
method for identifying the stiffness of the base isolation level 
in a structure equipped with base isolation with a limited 
number of sensors is presented. In the proposed method, a 
structure with several DOFs equipped with base isolation is 
transformed into a two-DOFs structure using the compression 
technique. The stiffness corresponding to the first DOF in the 
reduced mathematical model of the structure is equal to the 
stiffness of the base isolation level in the original structure. 
Here, the damage detection algorithm based on the identified 
system Markov parameters (DDA/ISMP) [8] is used to 
identify the structural parameters of the reduced model
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2- Compression of the structure equipped with a base 
isolation

Figure 1 shows a  floor building equipped with a base 
isolation. ix  where ,1, 2,3, ,i b n=   represents the 
displacement of the i-th story relative to the base isolation 
level . im  , ic  and ik  are the mechanical properties of the 
i-th story of the structure, indicating the mass, damping and 
stiffness, respectively. In order to identify the system, it is 
assumed that excitations bf  , nf  are applied to the structure 
by two actuators installed in the base isolation level and the 
roof floor, respectively. Also, the dynamic response of the 
structure under the effect of input excitation is measured 
only in two DOFs, including the level of the base isolation 
and the roof floor by sensors installed in these DOFs. Let’s, 
define the following parameters:
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in which, n nsm , n nsc  and n nsk  are the 
mechanical properties of the structure with fixed 
support. The location of the inputs in the primary 
structure is presented by 1( )n r+ uB . The external 

force vector rf  is used to simulate the 
environmental excitation in the primary structure. The 
parameter 1( )n+1φ  is the first identified mode 

shape of the primary structure. The matrices n n , 
1 nO  and nL  are the unit matrix, zero matrix 

and unit vector. The parameter 1 1( ) ( )n n+  +Γ  indicates 
the interaction matrix. The motion equation of the 
compacted structure is obtained as follows: 
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In fact, Equation 2 represents the equation of motion of 
a reduced two DOFs system in which the vector 2x  
is the displacement of the system, respectively. Also, 

2 20m , 2 20c  and 2 20k  are mass, 
damping and stiffness of the two DOFs system, 
respectively. Finally, the mechanical properties of the 
reduced structure is estimated using the DDA/ISMP 
method.  
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3- Numerical example
In this paper, in order to evaluate the performance of the 

proposed method in identifying the occurred damage in the 
isolation layer, two structures of five [13] and eight [14] 
stories equipped with base isolation is applied. In order to 
evaluate the accuracy of the proposed method, the amount 
of error in identifying base isolation stiffness in three noise 
intensities of 0%, 3% and 5% has been estimated. The 
error value in the identification of the eight-story structure 
is 0.81%, 2.28% and 4.44% and for the five-story structure 
is equal to 1.02%, 4.23% and 7.74%. Also, the correlation 
between the responses of the primary and reduced systems 
in the two structures of eight and five stories is 83.82% and 
97.73%, respectively. The results show that the percentage 
of error in the absence of noise is less than 2% and the 
identification precision error decreases under the high noise 
intensity level; however, the error rate is less than 10%. 

4- Conclusions
In this paper, a substructure identification method is 

proposed to identify the stiffness of the isolation level in 
structures equipped with the base isolation. The results 
showed that the proposed method, using a smaller number 
of sensors, detects the amount of stiffness in the level of the 
base isolation with appropriate accuracy even in the presence 
of high noise intensity. Moreover, due to the reduction in the 
number of data, the time required to identify the structure 
in the compressed case is approximately half of the original 
structure; this shows the efficiency and effectiveness 
of the proposed method in terms of cost and time.
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In this paper, in order to evaluate the performance of 
the proposed method in identifying the occurred damage 
in the isolation layer, two structures of five [13] and 
eight [14] stories equipped with base isolation is 
applied. In order to evaluate the accuracy of the 
proposed method, the amount of error in identifying 
base isolation stiffness in three noise intensities of 0%, 
3% and 5% has been estimated. The error value in the 
identification of the eight-story structure is 0.81%, 
2.28% and 4.44% and for the five-story structure is 
equal to 1.02%, 4.23% and 7.74%. Also, the correlation 
between the responses of the primary and reduced 
systems in the two structures of eight and five stories is 
83.82% and 97.73%, respectively. The results show that 
the percentage of error in the absence of noise is less 
than 2% and the identification precision error decreases 
under the high noise intensity level; however, the error 
rate is less than 10%.  

4. Conclusions 

In this paper, a substructure identification method is 
proposed to identify the stiffness of the isolation level in 
structures equipped with the base isolation. The results 
showed that the proposed method, using a smaller 
number of sensors, detects the amount of stiffness in the 
level of the base isolation with appropriate accuracy 
even in the presence of high noise intensity. Moreover, 
due to the reduction in the number of data, the time 
required to identify the structure in the compressed case 
is approximately half of the original structure; this 
shows the efficiency and effectiveness of the proposed 
method in terms of cost and time. 
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