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ABSTRACT: This paper presents a continuous micro model for the prediction of the behavior of 
a masonry structure. A model based on multi-laminate theory is developed to model the fracture in 
unreinforced masonry. The main purpose of this paper is to develop a constitutive model for practical 
applications which has few and easily measurable parameters and is capable of reproducing advanced 
features of the behavior of masonry brickworks such as cohesive-frictional response (strength dependence 
on confinement), dilatancy, and dilatancy control with confinement, anisotropy (inherent and induced 
which is caused by cracking formation), hardening-softening and different levels of brittle behaviors. 
The yield surface used in this model consists of a generalized Mohr-Coulomb yield surface together 
with a cut-off tensile. This can address both pre and post-peak behaviors. The capability of this model 
is confirmed for simulating the masonry behavior under lateral loading by comparing the numerical 
simulation results with experimental data in the literature..
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1- Introduction
Generally, numerical modeling of masonry walls is 

classified into three main categories including micro 
modeling, macro modeling, and equivalent element. The 
two latter approaches are characterized by a very low, 
Nevertheless, such simplified elements usually provide a 
coarse description of the real masonry element behavior [1, 
2]. A masonry wall is a composite material constructed of 
three main components: brick, mortar, and interface of brick-
mortar. In micro modeling, each component of the masonry 
wall is modeled separately. The micro-modeling strategies 
for masonry walls are summarized in three main groups: 
detailed micro-modeling, simplified micro-modeling, and 
continuous micro-models. The detailed micro-modeling can 
only be used for small specimens due to difficulties in pre 
and post-processing. The restriction of the simplified micro-
modeling is that the joint interaction with masonry units 
(i.e., bricks) cannot be modeled correctly due to egregious 
difference between mechanical properties of bricks and 
mortar joints causing the extension of important lateral stress 
of wall to the area adjacent to the joint [3, 4]. 

The main purpose of this paper is to develop a constitutive 
model based on multi-laminate theory for practical 
applications that is capable of reproducing advanced features 
of the behavior of masonry brickwork. The multi-laminate 

models can simulate induced anisotropy intrinsically. Also, 
the advantage of the continuous micro-models mainly 
resides in its simple and efficient format that it inherits 
from classical damage mechanics models. The recurrent 
disadvantage of standard continuum damage models, i.e., 
their poor capability of representing the dilatant behavior of 
mortar joints under shear stress states, has been overcome by 
the proposed model. 

2- Multi-laminate Framework
According to the multi-laminate framework, the 

mechanical behavior of a material can be simplified by 
assuming the body to be a combination of solid particles and 
an infinite number of imaginary sliding planes which are 
randomly oriented in space. The overall plastic deformation 
of a body is then a result of plastic movement along these 
planes [5].

The micro-level effective stress iσ ′   on each sampling 
plane is obtained using:
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Fig. 1. Transformation of global stress in integration 

points into local stresses on a sampling plane. 
 

To obtain the global plastic strain increment p , the 
contributions from all sampling planes have to be taken 
into account by the transformation of the micro-level 
plastic strain increment p

i   and the numerical 
integration over the surface of the unit sphere: 
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Where S denotes the surface of the unit sphere and iT  
is the transformation matrix of the sampling plane i which 
contains partial derivatives of the local effective stress 
vector concerning the global effective stress vector. 

Yield functions are denoted as df  and tf , called 
deviatoric and tension parts of the yield curve, 
respectively.  

The yield function df  is an extended Mohr-Coulomb 

criterion by introducing the mobilized friction angle mob  
: 
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Fig. 2. Yield and failure on a sampling plane. 

The third part of the yield curve tf  is a function of the 
cut-off criterion: 

t n tf   = −  (6) 

( ),max expt t v dih   = −  (7) 

In this model, an associated flow rule is used as tf . 
 

3. Simulation of tests conducted by Page 
To assess the performance of the proposed 

constitutive model, the experimental panel tests 
conducted in [6] are numerically reproduced here. The 
test specimen consisted of a 360×360 mm2 panel of 
running bond brick masonry. The tests were conducted 
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Where σ ′  is the effective stress tensor and in  is the 
normal unit vector of the plane i.

To obtain the global plastic strain increment pε∆  , the 
contributions from all sampling planes have to be taken into 
account by the transformation of the micro-level plastic 
strain increment 

p
iε∆   and the numerical integration over 

the surface of the unit sphere:
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considered.  
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Fig. 3. (a) Failure envelope for uniaxial tension at 
different orientations of the bed joints, (b, c) Crack 

propagation pattern within the mortar joints in 
specimens subjected to uniaxial tension perpendicular 

to the head joints, θ = 0 
 
4. Results and Discussion 

The directional strength characteristics obtained from 
numerical simulations are presented in Fig. 3 and are 
compared with the data of page and another numerical 
model [7-9]. Predominant failure modes are similar to 
those predicted numerically. The assessment of failure 
load is quite consistent with the page’s results, as shown 
in Fig. 3(a). This can be due to that the sample is 
relatively small and the results are significantly affected 
by the constraints imposed along the boundaries. 

 

5. Conclusion 
An advanced constitutive model was presented which 

is capable of addressing all distinct stages of 
deformation, that is elastic, elastoplastic, and softening. 
Subsequently, the page panel tests were examined and 
the directional strength characteristics of the brick 
masonry were obtained by conducting full-scale 
numerical simulations. The reliability of the developed 
model was demonstrated by comparing the results of 
numerical simulations with the experimental data.  
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4. Results and Discussion 

The directional strength characteristics obtained from 
numerical simulations are presented in Fig. 3 and are 
compared with the data of page and another numerical 
model [7-9]. Predominant failure modes are similar to 
those predicted numerically. The assessment of failure 
load is quite consistent with the page’s results, as shown 
in Fig. 3(a). This can be due to that the sample is 
relatively small and the results are significantly affected 
by the constraints imposed along the boundaries. 
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is capable of addressing all distinct stages of 
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Subsequently, the page panel tests were examined and 
the directional strength characteristics of the brick 
masonry were obtained by conducting full-scale 
numerical simulations. The reliability of the developed 
model was demonstrated by comparing the results of 
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