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ABSTRACT: The unique features and destructive effects of near-fault records are of high interest to 
many researchers; the issue of the location of structures against these records has received less attention 
due to the lack of data. Therefore, in this study, the focus is on the effect of the location of the structure vs. 
causative fault on the amount of damage. To this end, we need enough near-fault records, which can be 
simulated using the synthetic generation technique due to the lack of real data. Using the fault parameters 
obtained for the 1999-Kocaeli earthquake, 273 earthquake records were generated by different location 
coordinates using the theoretical-based Green’s function. To evaluate the seismic performance of the 
structures, OpenSEES software was used to carry out 9828 dynamic time-history analyses. The studied 
structures are SDOF with constant ductility. The records were applied according to the position of the 
structure against the causative fault and the relevant spectra were drawn as colored contours. The results 
showed that the location of the maximum responses in the inelastic state is almost the same as in the 
elastic state, so the critical location can be determined by a simpler elastic analysis; Stations that showed 
a maximum value at low periods have a larger amplitude, and stations that showed a maximum value 
at high periods have a higher pulse period. Both the distance and the angle of the SDOF location are 
influential in determining the location of the more severe failure. 
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1- Introduction
In recent years, numerous research has been carried 

out about constant-ductility SDOF systems [1–3]. In this 
researches, the focus was on the characteristics of near-fault 
records and their effects on structures response [4] but site 
orientation was rarely taken into account. Major researches 
were related to the effect of rotation of components of ground 
motions [5-9]. It is obvious that the distance and angle of the 
structure from fault alignment and location of the epicenter 
are effective on structural responses. Therefore, an ensemble 
of 273 records was generated via theoretical-based Green’s 
function technique by using fault rupture parameters derived 
from Hamidi et al.’s [10] research for the 1999 Kocaeli 
earthquake. Accordingly, the effect of site orientation toward 
earthquake in the form of Sd and Sa contours has been 
evaluated for constant-ductility inelastic SDOF systems for 
two ductility ratios µ=2 and µ=3.

2- Methodology
The SDOF system modeled in this paper includes mass, 

a rigid column with the elastic beam-column element, and 
a zero-length spring incorporating Steel01 material with 
elastic-perfectly plastic behavior. For computing responses, 
two OpenSEES elastic and inelastic codes were prepared. 
Matlab program was used to connect these two OpenSEES 

codes. In the elastic code, the value of yielding moment My 
is defined to be a large number so that it remains linear but 
in inelastic code the My value defined variable that changes 
due to the yielding resistance.
3- Results and Discussion 

For investigating the analysis results, some related 
contours were presented to show Sd and Sa values supporting 
periods from 1 to 5 sec as well as a specific value of 0.5 sec.

3- 1-  Investigation of inelastic Sd values 
To investigate Sd in the inelastic constant ductility status, 

some contours were drawn for µ=2 and µ=3 statuses. By 
comparing these contours with that of the elastic contour, 
it was specified that for periods equal or less than 3 sec the 
maximum value occurred on the right side of the epicenter, 
and for periods more than 3 sec, the location of maximum 
value occurred in the left side of the epicenter. The location 
of the maximum value in low periods in three statuses was 
similar but in higher periods seem different. It was specified 
that the maximum and minimum values in these three 
statuses had no significant difference. Generally, the two 
inelastic statuses had a close trend.

Fig. 1 shows the inelastic spectral displacement (Sd) 
contour for fault-normal records (for the case µ=3).
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3- 2- Investigation of inelastic Sa values 
To investigate Sa in the inelastic constant ductility status, 

some contours were drawn for µ=2 and µ=3 statuses. 
By comparing these contours with elastic contour, it was 
specified that up to 4 sec, the maximum value occurred on 
the right side of the epicenter, and after 4 sec, the maximum 
value was observed on the left side. The location of the 
maximum value in low periods was similar in three statuses, 
and in high periods was approximately similar. By increasing 
µ the maximum value of Sa was decreased except for 0.5 sec. 
The location of the maximum value is constant for different 
periods. Fig. 2 shows the inelastic spectral displacement (Sa) 
contour for fault-normal records (for the case µ=3).

3- 3- Strong ground motion parameters
In the investigation of strong ground motion parameters 

(i.e. PGA, PGV, and PGD), it was observed that the 
maximum values happened in the end rows that coincides 
with the location of the maximum value of Sd and Sa. This 
means that in the regions where the maximum responses 
were observed, the intensity and the ground displacement 
were higher. Fig. 3 demonstrates the variation of strong 
ground motion parameters versus fault alignment via 
colorful contours. 

4- Conclusion
•By comparing Sd and Sa in the forms of elastic and 

inelastic behavior for two ductility demand ratios (µ=2 
and µ=3), approximately a similar trend was seen between 

elastic and inelastic responses. Therefore, by an appropriate 
approximation by elastic analysis, one can estimate the values 
of the maximum responses and the corresponding locations 
for inelastic behavior. 

•Both parameters of R and θ (distance and angle from fault 
alignment) are important; two stations may have the same R 
but because of having different θ, different responses would 
be achieved. 

•The Effect of directivity is slight on the low-period 
structures. But this effect is quite obvious in the response 
of long-period structures. So that in the period of 0.5 sec, 
the diagram is seen as a line and in the period of 4 sec, the 
diagram is seen as a parabola. 
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Fig. 1. Inelastic spectral displacement (Sd) contour.

Fig. 3. Strong ground motion parameters contours.
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Fig. 3. Strong ground motion parameters contours. 
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