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ABSTRACT: Application of the steel ring as a type of seismic fuse has been one of the efforts made 
by researchers in recent years aiming to enhance the ductility of the bracing systems which in turn, 
possesses various advantages and disadvantages. Accordingly, to alleviate these disadvantages, an 
innovative bracing system with a diamond scheme equipped with a steel ring is introduced in this paper. 
In this system, the braces and yielding circular damper act in parallel whose main functionality is to 
increase ductility, energy absorption, and mitigate drawbacks of the existing bracing systems, in which 
the braces and yielding circular damper act in parallel. To conduct the experimental tests, specimens 
with three types of rigid, semi-rigid, and pinned connections were built and subjected to cyclic loading 
so that their performance could be analyzed. Promisingly, the results indicated both great applicability 
and efficiency of the proposed system in energy absorption and ductility. Moreover, it was concluded 
that as the braces and damper are in parallel, the use of a steel ring with a smaller size and thickness 
would result in higher energy absorption and load-resisting capacity when compared to the other existing 
systems. Finally, to assess the potential of numerically modeling the proposed system, its finite element 
model was simulated by ABAQUS software and observed that there is a great agreement between the 
numerical and experimental results.
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1- Introduction
Numerous studies have been carried out within the last two 

decades on improvement in the ductility of the concentrically-
braced frames (CBFs). Despite advantages of the CBFs such 
as ease of execution and adequate reparability, seismically-
induced ultimate displacements of the frames braced by the 
CBFs, have raised concerns. Moreover, the low ductility of 
the CBFs has resulted in their inadequate performance during 
seismic events [1, 2]. To improve the ductility of the CBFs, 
various approaches have been proposed such as the use of 
the circular elements made out of hyper-elastic materials in 
the dual moment resisting frame (MRF) and CBF [3]. By 
the way, most of these approaches require special materials 
and technology to assemble the braces. Thus, the application 
of the steel ring as the seismic fuse has been proposed by 
which ductility and energy absorption could be significantly 
enhanced [4, 5, 6-8]. 

2- Methodology
Cyclic tests were carried out on three types of bracing 

systems with pinned, semi-rigid, and rigid connections. 
Accordingly, connections, geometric and dimensional 
details are presented in Fig. 1. The components of this 
system include steel channels, plates, bolts, and nuts as well 
as the steel ring.

Notably, a difference of the pinned, semi-rigid, and 
rigid model concerns inclusion or exclusion of the ring in 
the system and type of channels connections to the other 
components of the system. Accordingly, in both rigid and 
pinned cases, the steel ring has been utilized in such a way that 
in the case of rigid connection, channels are connected to the 
central plate using welds and bolts but in contrast, channels 
are bolted to the central plate (i.e. bearing type connection) 
in the case of pinned connection. In the case of a semi-rigid 
model, the channel connections are similar to those of the 
pinned model but the only difference is that the steel ring 
is not included and instead, the two connection plates are 
continuously welded. In Fig. 2, it has been attempted to far 
better demonstrate the differences of the models. Moreover, 
one of the constructed specimens is shown in Fig. 3. It should 
be mentioned that the layout, diameter, and properties of 
bolts have been determined under AISC 358-16 [9]. All bolts 
and nuts are M27, length of 15 cm, and strength grade of 
A490. 

One of the notable features of the models concerns the 
low angle (15.6°) between the diagonals. Accordingly, it 
has been attempted to develop a minimum possible angle 
between the elements considering all executive limitations, 
so that the global buckling potential of the system reaches 
the lowest extent.
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Fig. 2. Comparative illustration of rigid, semi-rigid, and pinned models.
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4. Conclusion 

- The stress-strain curves of all three models were 
extracted based on the cyclic tests and then, energy 
absorption, maximum applied load, and stiffness 
were computed. The results approved the sufficient 
performance and applicability of the proposed 
system.   

- Comparison of the three developed systems, 
indicated that the pinned model has provided the 
best performance given its failure mode in which 
the damper has yielded and the other components 
of the system have remained elastic. On this basis, 
the pinned model was introduced as the final 
selected model of the proposed bracing scheme. 

- On the contrary to the other systems previously 
developed in the literature, in the pinned system 
proposed herein, the ring and diagonals act in 
parallel. Hence, the damper capacity is not only 
utilized maximally but also in the case of damper 
failure, the system is still able to withstand the 
induced loads, and failure of the steel ring does not 
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- Among the three models, the type of connections in 
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- Comparison between the numerical and 
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reasonably simulated in the numerical programs. 
Thus, as a subject for further research, the proposed 
system can be developed by assessing its 
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Yielding Stress (kN) 156.37 236.76 199.11 
Ultimate Stress (kN) 263.98 623.53 517.70 

Ductility 4.9 4.2 4.41 
 
4. Conclusion 

- The stress-strain curves of all three models were 
extracted based on the cyclic tests and then, energy 
absorption, maximum applied load, and stiffness 
were computed. The results approved the sufficient 
performance and applicability of the proposed 
system.   

- Comparison of the three developed systems, 
indicated that the pinned model has provided the 
best performance given its failure mode in which 
the damper has yielded and the other components 
of the system have remained elastic. On this basis, 
the pinned model was introduced as the final 
selected model of the proposed bracing scheme. 

- On the contrary to the other systems previously 
developed in the literature, in the pinned system 
proposed herein, the ring and diagonals act in 
parallel. Hence, the damper capacity is not only 
utilized maximally but also in the case of damper 
failure, the system is still able to withstand the 
induced loads, and failure of the steel ring does not 
lead to disrupting the performance of the whole 
system. 

- Among the three models, the type of connections in 
the pinned model, provided a great ability to repair 
or replace the steel ring. 

- Comparison between the numerical and 
experimental results indicated an acceptable 
agreement based on which, it can be concluded that 
the proposed bracing system is capable of being 
reasonably simulated in the numerical programs. 
Thus, as a subject for further research, the proposed 
system can be developed by assessing its 
performance against different loading conditions. 
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