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ABSTRACT: Prediction of pollutants transport in water resources is of particular importance in the 
management and prevention of their pollution. The heterogeneity and non-uniformity in the morphology 
throughout rivers which is known as the storage area, will make changes in the uniform transport of 
pollutants to downstream. Storage areas along rivers are actually places around the river where flow 
velocity in these places is significantly slower than the river’s flow velocity and are also known as dead 
zones. The presence of these places in rivers makes it difficult to apply the classic pollutant transport 
equation for them. For a more accurate simulation of the pollutant transport in natural rivers containing 
storage zones, some improvements should be made to the classic advection-dispersion equation. In this 
study, a new approach is presented by considering nonlinear flux dispersion and applying storage zones. 
In order for verification and validation of the proposed model, two series of hypothetical and real data 
examples have been used. Based on the measured results, the model outputs have acceptable adaptation 
with observational data and show that the proposed model is an accurate and acceptable model in the 
simulation of dissolved pollutant transport in rivers with storage zones. According to the obtained 
concentration-time curves, it can be concluded that the proposed model can model any type of storage 
area with any amount of area. Also, this model is applicable for all rivers with and without storage area 
and it is more superior in comparison with other similar models in terms of the number of parameters 
(considering merely one parameter) and simplicity in physical interpretation; and can be an appropriate 
alternative instead of the classic pollutant transport model in these type of rivers.

Review History:

Received: Mar. 26, 2020
Revised: May, 28, 2020
Accepted: Aug. 18, 2020
Available Online: Sep. 09, 2020

Keywords:

Advection-Dispersion Equation

Storage zone

Non-linear Flux

Dead Zone

Dispersion Flux

869

1- Introduction
Researchers have been conducting various experiments 

with tracer materials and simulating the solute transport 
in rivers with storage zones using the classic Advection-
Dispersion Equation (which does not consider the mass 
exchange between these areas and the main channel). They 
observed that the results of the equation do not correspond 
well with the experimental data; and the real data and 
simulation results have different characteristics, including 
that the real data at downstream show a lower peak and a 
longer sequence in the concentration-time diagram.

After simulating process and considering the storage 
zone, the researchers observed a good agreement between 
the simulation data and real data. And they proposed 
several approaches for more accurate simulation and error 
reduction.

One of the common methods for simulating the dissolved 
matter transport in rivers with storage zones is the Transient 
Storage Model (TSM), which is able to study the exchange 
of pollutants between the main waterway and storage zones. 
This model calculates the pollutant concentration in the main 
waterway and storage zone, and the storage zone is indicated 

by the mass exchange due to the difference between the 
concentrations of the rivers and the storage zone. In addition, 
significant portions of the water may enter pebbles and 
coarse sands of the river bed or porous areas along the river 
banks [1].

Also, the Fractional Advection-Dispersion Equation 
model was presented to simulate the transport of dissolved 
matter in rivers with storage zones. The tracer material is 
dispersed by different jumping behaviors. The skewness in 
the concentration-time curve of the dissolved material is due 
to the slow-moving component of the transport phenomenon 
(e.g., dead zones or substrate saturation zones), which is not 
determined by the normal advection-dispersion equation. 
Due to the irregular behavior of pollutant particles in aquatic 
environments, researchers have concluded that by using 
fractional derivatives, it is possible to more accurately 
estimate the distribution of pollution in aquatic environments; 
and this shortcoming in the fractional advection-dispersion 
equation was removed by adding ( )

C
AD

x x

α

α
∂ ∂

∂ ∂
 term. In 2004, the 

fractional advection-dispersion model was proposed for 
modeling the storage zone effects. [2] 
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Another common method for simulating dissolved 
matter transport in rivers with storage zones is the Variable 
Residence Time model, which simulates the advection and 
dispersion of dissolved matter in natural flows. The variable 
residence time model is a powerful and flexible numerical 
tool for simulating solute transport in natural flows.

In the present study, we try to increase the accuracy of 
the transport equation in the simulation of pollutant transport 
in rivers with storage zones by using a simple and effective 
approach with minimal changes in the classic advection-
dispersion equation. In this research, the main purpose is to 
preserve the practical aspects of the method and for applying 
the effect of storage zones, only one additional parameter 
has been used in the classic advection-dispersion equation 
in order to minimize the number of input parameters in the 
model in terms of storage zone effect. Also, attempts are 
being made to explain the applied physical changes and in 
accordance with the physics of the transport problem. 

2- Materials and Methods
The equation governing the pollutant transport phenomenon 

in rivers is the Advection-Dispersion Equation, which is a 
type of parabolic partial differential equations and is obtained 
by the combination of continuity equation and Fick’s first law. 
The classic Advection-Dispersion equation is expressed as 
Equation 1: 
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In the above Equation, A is flow area, C  is pollutant 
concentration, Q  is flow discharge, D  is dispersion 
coefficient, K  is decay coefficient, S  is source term, t  
is time variable and x  is location variable [3]. 

2.1. Mass transport processes 

The processes of mass transport in the river are the 
same processes of advection and dispersion. The 
process of mass advection occurs by the motion of the 
flow and the process of dispersion occurs due to the 
velocity gradient in the river. The transported mass flux 
by the advection and dispersion processes are obtained 
using Equations 2 and 3, respectively: 
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Which AdvJ  advection flux and DipJ  is dispersion flux 

[4]. As a matter of fact, the storage parameter indicates 
the presence of the storage zone in a part of river length 
and its value also depends on the extent and geometry 

of the storage zone. In this case, the general form of the 
advection-dispersion equation for unsteady and non-
uniform flow condition will be as follows: 
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For the steady and uniform flow condition, Equation 4 
is simplified as follows: 
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According to the presented equations, in the case of β = 
1, Equation 5 becomes a classic advection-dispersion 
equation and is used for parts of the river without a 
storage zone. The main strong point of the presented 
method in this research for modeling storage zones 
compared to other methods is the use of a minimum 
number of parameters (only one parameter) as well as 
simplicity in its physical interpretation. It should be 
noted that in other approaches of simulation of storage 
zones, the simulation process is mainly more complex 
than the method which presented in this research. In this 
research, the Method of Line has been used to solve 
Equation 5, which is a method for solving time-
dependent partial differential equations. 

3.  Results and Discussion 

The application of the proposed model in the field 
of pollutant transport simulation will be shown in the 
form of a hypothetical example as well as a real test 
case. In order to demonstrate the advantages and 
features of the proposed numerical model, also the 
results of its runs will be compared with the results of 
the classic advection-dispersion equation, both in the 
case of the hypothetical and real examples. 
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Table 1: Comparison between famous models in the field of pollutant transport simulation 
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storage zone 
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FADE 1 1 1   
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3- Results and Discussion
The application of the proposed model in the field of 

pollutant transport simulation will be shown in the form of 
a hypothetical example as well as a real test case. In order 
to demonstrate the advantages and features of the proposed 
numerical model, also the results of its runs will be compared 
with the results of the classic advection-dispersion equation, 
both in the case of the hypothetical and real examples.

To run the transport model, one initial condition and two 
boundary conditions are required. The initial concentration 
of pollutants in the main channel will be considered as the 
initial condition. The upstream boundary condition is the 
pattern of pollutant loading which enters the river; also the 
downstream boundary condition will be considered as zero 
gradient boundary type. Dispersion coefficient is known as 
one of the most important parameters of pollutant transport 
modeling. In the real test case, this coefficient is obtained 
via field measurements (dispersion coefficient calculated by 
hydraulic and hydrodynamic characteristics measurements) 
and in the presented hypothetical example similar to the real 
test case, the value of the dispersion coefficient was calculated 
by assumed hydraulic and hydrodynamic characteristics.

3- 1- Test case 2 
In fact, the main purpose of designing this example is 

to show the concept of transient storage in the form of a 
comparison of concentration-time diagrams. Another aim is 
to show the effect of the β parameter to consider the mass 
exchanges between the storage zone and the main channel 
and also the relationship of the storage zone with different 
β values. In the hypothetical example, to show the effect of 
storage zones, the results are presented for different values of 
storage parameter. Higher values of this parameter are used 
to create longer sequences and more skewed curves, which 

indicates that the dissolved material will move to downstream 
much more slowly than expected before. Thus higher values 
of storage parameter are required.

4- Conclusions
In this study, a comprehensive model for the numerical 

solution of advection-dispersion equations in rivers with 
and without storage zones was developed to eliminate the 
shortcomings of current models in the field of pollutant 
transport simulation and also it be simpler in terms of 
application. Also, the number of input parameters in the model 
for predicting the effect of the storage zone is minimized to 
make it easier to use. Moreover, the model run time and the 
calibration time of the input parameters for the storage zone 
is minimized.

These cases show the remarkable ability of the proposed 
model to predict pollutant transport in natural rivers and 
the proposed model can be used to predict the spatial and 
temporal pollutant concentration distribution.
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Table 2: Test cases information 

Test case River length Flow condition Upstream BC for pollutant transport location 

Test case 1 10 km steady and uniform Continuous for 1.5 hours Hypothetical 

Test case 2 433 m steady and non-uniform Continuous for 3 hours US - California 

 

To run the transport model, one initial condition and 
two boundary conditions are required. The initial 
concentration of pollutants in the main channel will be 
considered as the initial condition. The upstream 
boundary condition is the pattern of pollutant loading 
which enters the river; also the downstream boundary 
condition will be considered as zero gradient boundary 
type. Dispersion coefficient is known as one of the most 
important parameters of pollutant transport modeling. In 
the real test case, this coefficient is obtained via field 
measurements (dispersion coefficient calculated by 
hydraulic and hydrodynamic characteristics 
measurements) and in the presented hypothetical 
example similar to the real test case, the value of the 
dispersion coefficient was calculated by assumed 
hydraulic and hydrodynamic characteristics. 

3.1. Test case 2  

In fact, the main purpose of designing this example 
is to show the concept of transient storage in the form of 
a comparison of concentration-time diagrams. Another 
aim is to show the effect of the β parameter to consider 
the mass exchanges between the storage zone and the 
main channel and also the relationship of the storage 
zone with different β values. In the hypothetical 
example, to show the effect of storage zones, the results 
are presented for different values of storage parameter. 
Higher values of this parameter are used to create longer 
sequences and more skewed curves, which indicates 
that the dissolved material will move to downstream 
much more slowly than expected before. Thus higher 
values of storage parameter are required. 

4. Conclusion 

In this study, a comprehensive model for the 
numerical solution of advection-dispersion equations in 
rivers with and without storage zones was developed to 
eliminate the shortcomings of current models in the 
field of pollutant transport simulation and also it be 
simpler in terms of application. Also, the number of 
input parameters in the model for predicting the effect 
of the storage zone is minimized to make it easier to 
use. Moreover, the model run time and the calibration 
time of the input parameters for the storage zone is 
minimized. 

These cases show the remarkable ability of the 
proposed model to predict pollutant transport in natural 
rivers and the proposed model can be used to predict the 
spatial and temporal pollutant concentration 
distribution. 
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