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Experimental and numerical investigation of the effect of steel fiber on fiber reinforced 
concrete under multiaxial compression
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ABSTRACT: Concrete is one of the most widely used building materials in the world and the use of 
fiber-reinforced concrete (FRC) in structures to increase its tensile strength and improve its behavior 
has been extensively developed in recent decades. It is necessary to determine the constitutive equations 
of FRCs when the numerical investigation of their behavior is running. These equations should be 
including relations to handle the effect of steel fibers on the behavior of FRC. In this study, the behavior 
of FRCs with a different percent of steel fiber under triaxial compression, with different values of 
confining pressure, is experimentally and numerically investigated. Hoek cell is used in triaxial tests. 
In the numerical simulation, five-parametric constitutive equations with Willam-Warnke (W-W) failure 
criterion, isotropic hardening/softening function and non-associated plasticity were used and substepping 
integration method was carried out for integration of constitutive equations. For applying the effect of 
steel fibers on the failure surface, Kt coefficient was determined from the results of biaxial experimental 
tests on SFRCs. The constitutive equations are implemented with UMAT subroutine in ABAQUS and 
specimens are simulated in ABAQUS. By the comparison of the experimental (maximum strength) 
results and the numerical (stress-strain curve) results, an acceptable agreement was seen between them. 
Finally, based on the consistency between experimental and numerical results, it was concluded that the 
numerical model could be used, with enough confidence, to predict the behavior of SFRCs specimens.
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1- Introduction
As hardened concrete is brittle and has low tensile strength, 

many studies have been conducted on the production of fiber 
reinforced concrete (FRC) [1, 2]. Different types of fibers 
such as steel, polypropylene, and a hybrid form of them were 
considered in the Studies. In recent decades, many tests have 
been conducted to research the behavior of FRCs under 
triaxial stresses and to propose appropriate constitutive 
models for FRCs [3-6]. The constitutive equations include 
different material parameters that are determined from the 
experimental data.

In this study, a constitutive model is extracted to 
numerically study the steel fiber reinforced concrete (SFRC) 
under triaxial compression. This model involves the Willam-
Warnke failure criterion for the plastic behavior of SFRC 
as introduced in [5, 7, 8], isotropic hardening\softening 
rule and the non-associated flow rule of Grassl et al. [9] for 
determining the plastic deformations. Also, in this study, kt 
coefficient is proposed to conduct the effect of fibers on the 
triaxial strength of FRCs. In this paper, we used three batches 
of material parameters in the numerical simulations. Which 
the first set is from the experiments that we conducted in 
this study on SFRC specimens with different contents of 

steel fibers; the other two batches are from the experiments 
reported in the literature.

2- Experimental program
Four mix designs, with 0%, 0.5%, 1% and 2% steel fibers, 

were used to make 16 standard cylindrical specimens with 
diameter and height of 150×300 mm2 and 40 cylindrical 
specimens with diameter and height of 54×108 mm2. The 
corrugated steel fibers with a tensile strength >1100 MPa 
and l_f/d_f≡25mm/0.75mm=33.3 were used.

Triaxial tests were performed on the SFRC 
cylindrical specimens in accordance with ASTM C801 
[10] (see Figure 1). These experiments were conducted 
under four confining pressure: 5, 10, 15 and 20 MPa. A 
typical load protocol for the triaxial compression test is 
depicted in Figure 2. we can realize that after applying 
5 MPa lateral pressure, the axial and confining stresses 
were increased until a specified confining pressure 
is achieved. While keeping the confining pressure 
constant, the additional axial stress is increased at a 
constant stress rate of 0.2 MPa s-1 through the platens 
located at the ends of Hoek cell.
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The constitutive model for SFRCs is proposed based on 
the plasticity model adopted in this study and involves the 
loading criterion, the hardening/softening function and the 
non-associated flow rule.

For the simulation of SFRCs under triaxial stresses, the 
W-W five-parameter loading surface has been used in the 
literature. Using Haigh-Westergard coordinates, the W-W [7] 
failure surface for SFRC is expressed via
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Figure 2. A typical load protocol in the triaxial test. 
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 Results and discussions  

The results of triaxial compressive tests are 
summarized in Table 1 for the SFRC specimens. The so-
called strength enhancement coefficient due to the 
confining pressure is calculated in the range 3.9 to 
6.3 for these SFRCs indicating a high scatter in this 
coefficient in accordance with the literature. 
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61.3 78.7 90.2 110 

68.5 87.3 99.5 117 

57.6 73.8 89.1 108 

 

with the use of triaxial test results, the failure 
envelope of SFRC specimens can be depicted according 
to ASTM C801. Figure 3 shows failure envelop in terms 
of n −   . It is clear that for the range of stress values 
considered here the effect of steel fibers on the failure 
envelope is mild.  
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4- Conclusion
In this study, constitutive equations are proposed based on 

non-associated flow rule with w-w failure criterion, isotropic 
hardening\softening function, and Grassl plastic potential 
function. Triaxial tests conducted on SFRC specimens 
and experimental data have been employed to determine 
the various material parameters of the plasticity model of 
SFRCs. The good agreement between numerical results and 
the experimental data indicates that not only the adopted 
constitutive equations represent the behavior of SFRCs very 
well, but also the implemented integration scheme can be 
employed in practical applications of SFRCs.
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Fig. 4. fStress-strain curves for SFRCs under triaxial loadings.
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