شبیه سازی عددی مدل آلودگی نفتی در سواحل شمال غربی خلیج فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی، دانشکده مهندسی عمران پردیس فنی، دانشگاه تهران ، ایران

2 کارشناسی ارشد سازههای هیدرولیکی، دانشکده مهندسی عمران پردیس فنی، دانشگاه تهران ، ایران

3 دانشجوی دکتری سازههای هیدرولیکی، دانشکده مهندسی عمران، دانشگاه تربیت مدرس، تهران، ایران

چکیده

در مقاله حاضر نتایج مدل­سازی توزیع آلودگی نفتی در ناحیه شمال غربی خلیج فارس در نزدیکی چاه الاحمدی مورد بررسی قرار گرفته است. بدین منظور مدل دو بعدی توزیع آلودگی نفتی در آب دریا تهیه شده است که جهت افزایش دقت آن در تخمین جملات انتقال از روش بالادست مرتبه سوم همراه با محدودکننده GH استفاده شده است. در این مدل نفتی در دو لایه لکه سطحی و امولسیون مغروق مورد بررسی قرار می‌گیرد. این مدل بر اساس اطلاعات هیدرودینامیک و سرعت جریان آب، باد، تبخیر، امولسیون و جذب ساحل، توزیع و حرکت لکه آلودگی را پیش­بینی می­نماید. در مطالعه موردی در ساحل خلیج فارس از اطلاعات ماهانه بادهای ماه­های مختلف در خلیج فارس جهت پیش­بینی طولانی مدت لکه آلودگی استفاده شده است. با مقایسه نتایج مدل آلودگی نفتی با داده­های اندازه‌گیری شده آلودگی نفتی خلیج فارس، دقت بالای مدل عددی و شیوه مدل­سازی انجام شده، اثبات گردیده است

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Oil Spill in the North West of the Persian Gulf

نویسندگان [English]

  • Reza Ghiassi 1
  • Jamshid Z. Heydariha 2
  • Amin Mahmoudi Moghadam 3
1 Assistant Professor, School of Civil Engineering, University of Tehran, Tehran., Iran
2 Ph.D Student, Department of Civil and Environmental Engineering, University of Windsor, Windsor, Canada
3 Ph.D Student Department of Civil and Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

This paper presents the results of oil spill simulation in the northwest of the Persian Gulf, next to Al-Ahmadi oil wells. A two-dimensional depth averaged flow and oil pollution model is developed for coastal water simulation. To increase accuracy advective terms in transport equation were discretized by applying third-order upwind scheme and modified by using GH limiter. The oil spill is considered in two different layers: surface smudge layer and depth emulsion part. The model takes into account the major physiochemical phenomena of oil spill including wind and current speed, oil evaporation, dissolution and coastline deposition. Average monthly wind speed has been used for long-term prediction in the Persian Gulf. Comparing the model result with the actual measured data in the incident sight revealed good agreement for predicting oil spill behavior and model accuracy.

کلیدواژه‌ها [English]

  • Marine Oil Spill
  • Persian Gulf
  • GH Limiter
  • Spread of Oil Slick
[1] Johnston, P.; Santillo, D.; Stringer, D.; Ashton, J.; McKay, B.; Verbeek, M.; Jackson, E.; Landman, J.; Broek, J.V.D., Samsom, D., Simmonds, M.; Report On the Word ocean, Green peace Research Laboratories report.
[2] ASCE Task Committee; on Modeling of Oil Spills of the Water Resources Engineering Division, State of art review of modeling transport and fate of oil spills, J. Hydraulic Engineering, 122(11), pp. 594- 609, 1995.
[3] Oil Spill Intelligence Report, Oil Spill Involving More Than 10 Million Gallons.,
http://www.cutter.com/osir/biglist.htm
[4] Yu, X.; Liu, H.; Dong, Z.; A Numerical Method For Oil Spreading On Water, Korea-China Conference on Port and Coastal Engineering, September 21- 23, 2000, Seoul, Korea. 2000.
[5] Van Hamme, J., D.; Singh, A.; Ward, O., P.; Recent advances in petroleum microbiology, Microbiology and Molecular Biology Reniews, Vol. 67, pp. 503- 510, 2003.
[6] Winderl, C.; Anneser, B.; Griebler, C.; Meckenstock, R., U.; Lueders, T.; Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume, Applied and Environmental Microbiology, vol. 74, pp. 792- 801, 2008.
[7] Owens, E., H.; Taylor, E.; Humphrey, B.; “The persistence and character of stranded oil on coarse-sediment beaches”, Marine Pollution Bulletin, vol. 56, pp. 14- 26, 2008.
[8] غیاثی،ر. طالب پور، م . ح.، شیرازی، آ.، بررسی آلودگی نفتی خلیج مکزیک، چگونگی توسعه و تاثیرات آن بر محیط زیست، ششمین کنگره ملی مهندسی عمران، سمنان، 1390
[9] Marianoa, A., J.; Kourafaloua, V., H.; Srinivasana, A.; Kanga, H.; Halliwell, G., R.; Ryana, E., H.; Rofferc, M.; On the modeling of the 2010 Gulf of Mexico Oil Spill, Dynamics of Atmospheres and Oceans, vol. 52, pp. 322– 340, 2011..
[10] مجموعه اولین کنفرانس بین المللی بررسی اثرات نشست نفت در خلیج فارس، 20 اردیبهشت الی 6 خرداد 1364، موسسه انتشارات چاپ دانشگاه تهران 1364.
[11] Shen, H., T.; Yapa, P., D.; Oil Slick Transport in Rivers, J. of Hydr. Engrg, ASCE, 114(5), pp. 529- 543, 1989.
[12] Johanson, P.; Santillo, D., St., R.; Ashton, J.; Report On the Word Ocean, Green peace Research Laboratories report, 1998.
[13] Korotenko, K., A.; Mamedov, R., M.; Mooers, C. N., K.; Prediction of the Transport and Dispersal of Oil in the South Caspian Sea Resulting from Blowouts, Environmental Fluid Mechanics 1, pp. 383- 414, 2002.
[14] Mackay, D.; Paterosn, S.; K.trudel. A.; Mathematical Model of Oil Spill Behavior, Report EE-7. Enviromental Protection Services, Fisheries and Environmental Canada, Ottawa, Ontario, 1980.
[15] Mackay, D.; Paterson, S.; Madeau, S.; Calculation of the evaporation rate of volatile liquids, Proceedings, National Conference on Control of Hazardous Material Spills, Louisville, Kentucky, pp. 361-368, 1980.
[16] Curl, H., Jr.; O’Donnel, K.; Chemcial and Physical Properties of Refined Petroluem Products, NOAA Marine Ecosystems Analysis Program, Boulder, CO. NOAA Technical Memorandom ERL MESA-17. 31 pgs, 1977.
[17] Gilfillan, E., S.; Dispersant Use Guidelines for the State of Maine, Bowdoin College
Marine Research Laboratory. 69 pgs, 1993.
[18] American Petroleum Institution (API); The Role of Chemical Dispersants in Oil Spill Control, Prepared by the API Dispersants Task Force. API: Washington, DC. API Publ. No. 4425. 39 pgs, 1990.
[19] Markarian, R, K.; Nicolette, J., P.; Barber, T., R.; Giese, L., H.; A Critical Review of Toxicity Values an Evaluation of the Persistence of Petroleum Products for Use in Natural Resource Damage Assessments, Entrix, Inc. Wilmington, DC, for American Petroleum Institute, Washington, DC, 1993.
[20] Farmer, D.; Li, M.; Patterns of Bubble Clouds Organized by Langmuir Circulation, Journal of Physical Oceanography, vol. 25, (6 part II), pp. 1426- 1440, 1995.
[21] Farrell, K., J.; Cawley, A., M.; Hydrographic tracking abd Oil weathering Model for Contingency Planning and Emergency Response in the Shannon Estuary, Ireland MCS International Merchants Rd,Galway, Ireland, 1990.
[22] Cohen, Y.; MacKay, D.; Shiu, W., Y.; Mass transfer rates between oil slicks and water, The Canadian Journal of Chemical Engineering. vol. 58, 1980.
[23] Shen, H., T.; Yapa, P., D.; Petroski, M., E.; Simulation of Oil Slick Transport in Great Lake Connecting Channels, Theory and Model Formation, CRREL Report, pp. 90-1,1990.
[24] Tkalich, P.; Chao, X., B.; Accurate Simulation Of Oil Slick, Proceedings of the International Oil Spill Conference, Tampa, Florida, API, Washangton DC, USA, pp. 1133- 1137, 2001.
[25] Cormack, D.; Nichols, J., A.; Lynch, B.; Investigation of Factors Affecting the Fate of North Sea Oil Discharged as Sea. Warren Spring Laboratory Publication, Stevenage, Hertfordshire, UK, 1978.
[26] Jeffery, P., G.; Large-Scale Experiments on the Spreading of Oil at Sea and Disappearance By Natural Factors, Proceedings, Joint Conference on Preventation and Control of Oil Spills,American Petroleum Institute, Washangton DC. pp. 469- 474, 1973.
[27] Al-Rabeh, A., H.; Cekirge, H., M.; Gunay, N.; Modeling the fate and transport of Al-Ahmadi oil spill, Water and Air Pollution, vol. 65, pp. 257 -279, 1992.