استفاده از رویکرد شبکه بیزین جهت پیش‌بینی سطح آب زیرزمینی (مطالعه موردی: آبخوان قزوین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، دانشگاه صنعتی قم، قم، ایران

2 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران

چکیده

استفاده بی‌رویه از منابع آب زیرزمینی سبب شده تا وضعیت آبخوآن‌ها در شرایط بحرانی قرار گیرد. این مطالعه به ارائه یک چارچوب در استفاده از شبکه‌ بیزین در برآورد سطح آب زیرزمینی و تحلیل هیدروگراف آبخوان می‌پردازد. 5 متغیر دما، سطح آب زیرزمینی در ماه قبل، برداشت از آب زیرزمینی، تغذیه آبخوان و بارندگی به عنوان متغیرهای ورودی و سطح آب زیرزمینی در ماه فعلی به عنوان متغیر خروجی شبکه بیزین معرفی گردید. یک دوره آماری 10 ساله، 8 سال جهت آموزش و 2 سال جهت صحت‌سنجی مدل، استفاده شد. مدل شبکه بیزین در سه حالت صریح، خوشه‌بندی و حالت با تاخیر دو و سه ماهه اجرا و مورد تحلیل قرار گرفت. نتایج شبیه‌سازی در حالت صریح نشان داد که بیشتر چاه‌های مشاهده‌ای دارای همبستگی مناسبی بین سطح آب زیرزمینی شبیه‌سازی شده و مشاهداتی می‌باشد. نتایج حالت خوشه‌بندی نسبت به حالت صریح دارای دقت کمتری بود. در حالت سوم، تاخیر دو و سه ماهه جهت شبیه‌سازی استفاده شد. در این حالت نتایج نشان داد که میزان همبستگی بین سطح آب زیرزمینی مشاهده شده و شبیه‌سازی شده کاهش یافته است به گونه‌ای که در تاخیر زمانی یک ماهه، ریشه میانگین مجذور مربعات خطا برابر 1/87 متر، در حالت با تاخیر دو ماهه 3/76 متر و در حالت سه ماهه برابر 6/42 متر است. بنابراین، تاخیر زمانی یک ماهه جهت شبیه‌سازی‌ها انتخاب گردید و به منظور ارزیابی و برآورد تغییرات کل آبخوان از هیدروگراف آبخوان استفاده شد که نتایج حاکی از دقت مناسب نتایج برای کل آبخوان می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Bayesian network approach for predicting groundwater level (Case study: Qazvin aquifer)

نویسندگان [English]

  • Bayramali Mohammadnezhad 1
  • Shayan Sadegholvad 2
  • Morteza Jiryaei Sharahi 1
1 Department of Civil Engineering, Faculty of Technical Engineering, Qom University of Technology (QUT), Iran.
2 Master of Water Resources Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Excessive use of groundwater resources has put the aquifers in critical situations. This study provides a framework for using the Bayesian network for groundwater level estimation and aquifer hydrograph analysis. Five variables, temperature, the groundwater level in the previous month, groundwater withdrawal, aquifer feeding, and rainfall were used as input variables, and the groundwater level in the current month was used as an output variable in the Bayesian network simulations. A 10-year statistical data, 8 years of data for model training and 2 years of data for model validation were used. The Bayesian network model was implemented and analyzed in three explicit, clustering and two- and three-month delay states. Explicit simulation results showed that most of the wells have a good correlation between the simulation and observed data. Clustering results were less accurate than explicit ones. In the third case, two and three months delay data was used for simulations. The results showed that the correlation between observed and simulated groundwater levels decreased. At 1, 2 and 3 months delay statuses, Root Mean Square Error was 1.87 m, 3.76 m, and 6.42 m, respectively. Therefore, the one-month lag time was chosen for the simulations and the aquifer hydrograph was used to evaluate and estimate total aquifer variations. The results indicate the appropriate accuracy of the aquifer parameters estimation.

کلیدواژه‌ها [English]

  • Bayesian network
  • Clustering
  • Groundwater level
  • Qazvin aquifer
  • Simulation
[1] T. Chan, H. Ross, S. Hoverman, B. Powell, Participatory development of a Bayesian network model for catchment‐based water resource management, Water Resources Research, 46(7) (2010).
[2] K. Shihab, N. Al-Chalabi, An efficient method for assessing water quality based on Bayesian belief networks, International Journal on Soft Computing, 5(2) (2014) 21.
[3] J.Y. Shin, M. Ajmal, J. Yoo, T.-W. Kim, A Bayesian network-based probabilistic framework for drought forecasting and outlook, Advances in Meteorology, 2016 (2016).
[4] T.D. Phan, O. Sahin, J.C. Smart, System dynamics and Bayesian network models for vulnerability and adaptation assessment of a coastal water supply and demand system,  (2016).
[5] M.J. Anbari, M. Tabesh, A. Roozbahani, Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks, Journal of environmental management, 190 (2017) 91-101.
[6] H. Wang, C. Wang, Y. Wang, X. Gao, C. Yu, Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis–Hastings Markov Chain Monte Carlo algorithm, Journal of hydrology, 549 (2017) 476-483.
[7] T. Xu, A.J. Valocchi, M. Ye, F. Liang, Y.F. Lin, Bayesian calibration of groundwater models with input data uncertainty, Water Resources Research, 53(4) (2017) 3224-3245.
[8] P. Weber, G. Medina-Oliva, C. Simon, B. Iung, Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas, Engineering Applications of Artificial Intelligence, 25(4) (2012) 671-682.
[9] A. Castelletti, R. Soncini-Sessa, Bayesian Networks and participatory modelling in water resource management, Environmental Modelling & Software, 22(8) (2007) 1075-1088.
[10] M. Ramin, T. Labencki, D. Boyd, D. Trolle, G.B. Arhonditsis, A Bayesian synthesis of predictions from different models for setting water quality criteria, Ecological Modelling, 242 (2012) 127-145.
[11] P. Noorbeh, A. Roozbahani, H. Kardan Moghaddam, Annual and Monthly Dam Inflow Prediction Using Bayesian Networks, Water Resources Management, 34(9) (2020) 2933-2951.
[12] B. Choubin, F.S. Hosseini, Z. Fried, A. Mosavi, Application of Bayesian Regularized Neural Networks for Groundwater Level Modeling, in:  2020 IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), 2020, pp. 000209-000212.
[13] J.-L. Molina, D. Pulido-Velázquez, J.L. García-Aróstegui, M. Pulido-Velázquez, Dynamic Bayesian networks as a decision support tool for assessing climate change impacts on highly stressed groundwater systems, Journal of Hydrology, 479 (2013) 113-129.
[14] K.M. Hamid, A. Roozbahani, Evaluation of Bayesian Networks Model in Monthly Forecasting of Groundwater Level (Case Study: Birjand Aquifer), Journal of Water and Irrigation Management, 5(2) (2015) 139-151.
[15] D. Nash, M. Hannah, Using Monte-Carlo simulations and Bayesian Networks to quantify and demonstrate the impact of fertiliser best management practices, Environmental Modelling & Software, 26(9) (2011) 1079-1088.
[16] T.E. Schaapveld, S.L. Opperman, S. Harbison, Bayesian networks for the interpretation of biological evidence, Wiley Interdisciplinary Reviews: Forensic Science, 1(3) (2019) e1325.
[17] B. Server, Bayesian networks—an introduction, BayesServer. com. Available at: https://www.bayesserver.com/docs/introduction/bayesian-networks,  (2019).
[18] K.P. Murphy, A brief introduction to graphical models and bayesian networks. Berkeley, CA: Department of Computer Science, University of California-Berkeley,  (2001).
[19] A. Hugin Expert, S. 2013. HUGIN API Reference Manual, in, 2013.
[20] H.H. Bock, Probabilistic aspects in cluster analysis, in:  Conceptual and numerical analysis of data, Springer, 1989, pp. 12-44.
[21] J. MacQueen, Some methods for classification and analysis of multivariate observations, in:  Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA, 1967, pp. 281-297.
[22] E. Ebrahim, A. Roozbahani, B. Mohammad Ebrahim, Groundwater level prediction using dynamic Bayesian networks model based on sensitivity analysis (Case study: Birjand plain), Iranian Water Researches Journal, 12(29) (2018) 91-100.