ارائه یک چارچوب مبتنی بر معیار کمی برای انتخاب ابعاد مناسب دامنه جریان در مدل‌سازی عددی جریان آب ورودی به داخل تونل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، دانشکده مهندسی معدن مدرسه معدنی استرالیای غربی، دانشگاه کرتین، استرالیا

3 استاد، دانشکده مهندسی معدن و متالوژی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران،

چکیده

انتخاب ابعاد مناسب برای مدل‌سازی جریان آب ورودی به داخل تونل با استفاده از روش‌های عددی، یکی از مباحث چالشی در حوزه مهندسی سازه‌های زیرزمینی است. هدف از این مقاله، ارائه یک چارچوب مبتنی بر معیار کمی‌جهت انتخاب ابعاد مناسب دامنه جریان برای مدل‌سازی عددی جریان (آرام، پایا و خطی) آب ورودی به داخل تونل واقع در آبخوان با گسترش عرضی نامتناهی است. بدین منظور، ابتدا یک فاکتور بی بعد تحت عنوان "نرخ تغییرات نرمال شده دبی جریان آب ورودی به داخل تونل (NRIV ") تعریف شده و سپس بر اساس یک مقدار حدی تحت عنوان "سطح پذیرش تغییرات(ALV  )،" ابعاد مناسب برای دامنه جریان(SDS ) تعیین شده است. این چارچوب پیشنهادی بر روی نتایج حاصل از مدل‌سازی عددی جریان آب ورودی به داخل تونل برای دامنه وسیعی از پارامترهای هندسی تونل و ابعاد مختلف دامنه جریان پیاده سازی شده و در نهایت کارآیی این چارچوب مورد ارزیابی قرار گرفته است. نتایج حاصل از تحلیل‌های انجام شده نشان داد که با افزایش عمق و ابعاد فضای زیرزمینی، ابعاد مناسب برای مدل‌سازی جریان بصورت غیرخطی افزایش می‌یابد. همچنین، با کاهش ALV از 0/0005 به0/0001 ،ابعاد دامنه جریان مورد نیاز برای مدل‌سازی بطور متوسط 1/8 برابر شده و بطور همزمان خطای نسبی نتایج مدل‌سازی تنها در حدود 4 %کاهش می‌یابد. افزایش ابعاد دامنه جریان، باعث افزایش شدید زمان مدل‌سازی و کاهش ناچیز خطای مدل‌سازی شده که در نتیجه، برای کاربردهای عملی، سطح قابل قبول ALV معادل با 0/0005 پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Quantitative Criterion-based Methodology for Selecting Appropriate Domain Size for Numerical Modeling of Groundwater Inflow into Tunnel

نویسندگان [English]

  • Morteza Javadi 1
  • Mostafa Sharifzadeh 2
  • korosh shahriar 3
1 Assistant Professor; Faculty of Mining Eng., Petroleum and Geophysics, Shahrood University of Technology
2 Associate Professor, Curtin University, Western Australian School of Mine (WASM)
3 Professor, Department of Mining & Metallurgical Engineering, Amirkabir University of Technology
چکیده [English]

Selecting the appropriate model size is a challenging issue in the numerical modeling of groundwater inflow into underground excavation. This issue was studied in this paper by presenting a methodology for selecting appropriate domain size for numerical modeling of groundwater inflow into a tunnel that is excavated inside of semi-infinite aquifer. To reach this goal, first, a dimensionless factor, the so-called normalized rate of inflow variation (NRIV), was defined in cooperation with its limit value, so-called acceptable level of variation (ALV). Then, the appropriate or suitable domain size (SDS) of the numerical model was determined based on the NRIV and ALV. The applicability of the suggested methodology was evaluated for the results of wide range geometrical parameter of tunnel (including different tunnel radiuses and depths) and different flow domain sizes. The results of this study indicated that the required domain size for numerical modeling of groundwater inflow into tunnel increase nonlinearly for larger and deeper tunnels. Moreover, the required domain size increases to 1.8 times by decreasing the level of ALV from 0.0005 to 0.0001, where the relative accuracy of results has only increased up to 4%. Since the larger domain size requires much computational difficulties and insignificant accuracy, the ALV in the level of 0.0005 is suggested for practical numerical modeling of groundwater inflow into tunnels.

کلیدواژه‌ها [English]

  • Tunnel and Underground Excavation
  • Groundwater
  • Water Inflow into Tunnel
  • Numerical Model Size
  • Accuracy of Numerical models
[1]. Zarei, H.R., Uromeihy, A., Sharifzadeh, M., 2013. A New Tunnel Inflow Classification (TIC) System through Sedimentary Rock Masses. Tunn. Undergr. Space Technol., 34, 1–12.
[2]. Aalianvari, A., Katibeh, H., Sharifzadeh, M., 2012. Application of Fuzzy Delphi AHP Method for the Estimation and Classification of Ghomrud Tunnel from Groundwater Flow Hazard. Arab. J. Geosci., 5, 275–284.
[3]. Tammetta, P., 2013. Estimation of the Height of Complete Groundwater Drainage Above Mined Longwall Panels. Groundwater, 51(5) 723–734.
[4]. Kusaka, T., Sreng, S., Uzuoka, R., Ito, R., Mochizuki, A., 2011. Study on ground upheaval caused by the rise in groundwater level by centrifuge tests and by numerical simulations. Japanese Geotechnical Journal, 6(3), 439-454. https://doi.org/10.3208/jgs.6.439
[5]. Kusaka, T., Sreng, S., Tanaka, H., Sugiyama, H., Ito, T., Kobayashi, K., 2015. Experimental study on influence of ground rebound on tunnels caused by groundwater restoration. The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 1578-1582. http://doi.org/10.3208/jgssp.JPN-146
[6]. Goodman, R., Moye, D., Schalkwyk, A., Javendel, I.,1965. Groundwater Inflow During Tunnel Driving. Eng. Geol., 1, 150–162.
[7]. El Tani, M., 2003. Circular Tunnel in a Semi-Infinite Aquifer. Tunn. Undergr. Space Technol., 18(1), 49–55.
[8]. Park, K.-H., Owatsiriwong, A., Lee, J.-G., 2008. Analytical Solution for Steady-State Groundwater Inflow into a Drained Circular Tunnel in a Semi-Infinite Aquifer: A Revisit. Tunn. Undergr. Space Technol., 23, 206–209.
[9]. Huangfu, M., Wang, M.-S., Tan, Z.-S., Wang, X-.Y., 2010. Analytical Solutions for Steady Seepage into an Underwater Circular Tunnel. Tunn. Undergr. Space Technol., 25, 391–396.
[10]. Anagnostou, G., 1995. The Influence of Tunnel Excavation on Hydraulic Head. Int. J. Numer. Anal. Meth. Geomech., 19, 725-746.
[11]. Molinero, J., Samper, J., Juanes, R., 2002. Numerical Modeling of the Transient Hydrogeological Response Produced by Tunnel Construction in Fractured Bedrocks.Eng. Geol., 64, 369–386.
[12]. Li, D., Li, X., Li, C.C., Gong, F., Huang, B., Gong, F., Zhang, W., 2009. Case Studies of Groundwater Flow into Tunnels and an Innovative Water-Gathering System for Water Drainage. Tunn. Undergr. Space Technol., 24, 260–268.
[13]. Kurose, H., Ikeya, S., Chang, C.-S., Maejima, T., Shimaya, S., Tanaka, T.,  Aoki, K., 2014. Construction of Namikata underground LPG storage cavern in Japan. International Journal of the JCRM, 10, 15-24.
[14].  Jiang, X.-W., Wan, L., Jim Yeh, T.-C., Wang, X.-S., Xu, L., 2010. Steady-state discharge into tunnels in formations with random variability and depth–decaying trend of hydraulic conductivity. Journal of Hydrology, 387, 320–327.
[15]. Javadi M, Sharifzadeh M, Shahriar K. 2016. Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnel.Underg. Space Technol. 51: 424–438. DOI:10.1016/j. tust.2015.09.003
[16]. Fernandez, G., Moon, J., 2010. Excavation-induced hydraulic conductivity reduction around a tunnel – Part 2: Verification of proposed method using numerical modeling. Tunn. Undergr. Space Technol., 25, 567–574.
[17]. Javadi, M., Sayadi, S., 2018. Stochastic discontinuum analysis of hydrocarbon migration probability around an unlined rock cavern based on the discrete fracture networks. Tunn. Undergr. Space Technol., 81, 41-54.
[18]. Butscher, C., Einstein, H. H., Huggenberger, P., 2011. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks. Water Resources Research, 47,W11520. doi:10.1029/2011WR011023
[19]. Qi, T. Y., Lei, B., Wang, R., Li, Y., Li, Z.Y., 2018. Solidfluid-gas coupling prediction of harmful gas eruption in shield tunneling. Tunnelling and Underground Space Technology, 71, 126–137.
[20]. Bobet, A., 2010. Numerical Methods in Geomechanics. The Arabian Journal for Science and Engineering, 35(1B), 27-48. [21]. Indraratna, B., Ranjith, P., 1998. Effects of Boundary Conditions and Boundary Block Sizes on Inflow to an Underground Excavation- Sensivity Analysis. IMWA Symposium, Johannesburg.
[22]. Butscher, C., 2012. Steady-state groundwater inflow into a circular tunnel. Tunnelling and Underground Space Technology 32, 158–167.
[23]. Farhadian, H., Katibeh, H., Huggenberger, P., Butscher, C., 2016. Optimum model extent for numerical simulation of tunnel inflow in fractured rock Tunn. Undergr. Space Technol., 60, 21–29.
[24]. Javadi M, Sharifzadeh M, Shahriar K. 2016. Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnel.Underg. Space Technol. 51: 424–438. DOI:10.1016/j. tust.2015.09.003
[25]. Javadi, M., Sayadi, S., 2018. Stochastic discontinuum analysis of hydrocarbon migration probability around an unlined rock cavern based on the discrete fracture networks. Tunn. Undergr. Space Technol., 81, 41-54.
[26]. Javadi, M., Sayadi, S., 2018. Upgrading the FNETF Computational Code for Modeling of Groundwater Inflow into Underground Excavations by Using the Stochastic Continuum Theory. Tunneling and Underground Space Engineering (TUSE), In press. (In Persian).
[27]. Javadi, M., Sharifzadeh, M., Shahriar, K., Sayadi, S. 2016. Migration Tracing and Kinematic State Concept Embedded in Discrete Fracture Network for Modeling Hydrocarbon Migration around Unlined Rock Caverns. Journal of Computers & Geosciences, 91, 105-118.doi:10.1016/j.cageo.2016.02.012